Air Pollution and Women’s Reproductive Health and Healthcare in India

Abstract

Air pollution has been shown to have wide-ranging negative effects on health, including effects
on fertility. Less is known about the way people respond to high levels of air pollution and the
indirect effects air pollution may have on access to reproductive healthcare. This paper merges
data from India’s Demographic and Health Surveys (2015/2016) to satellite-derived PM2.5 data
to estimate the effect of air pollution in India on fertility outcomes and the use of reproductive
healthcare. To address endogeneity concerns, we use local wind direction as an instrumental
variable for air pollution. We find no significant short-term effect of air pollution on the
probability of giving birth, but for every 10 ng/msincrease in PM2.5 levels in the 12 months
preceding the survey, the probability of having had a miscarriage during this time period
increases by 0.17 percentage points (pp), or 15.5% over the sample mean. Air pollution also
reduces the likelihood of using modern family planning methods by 4.06pp (12.3%) and of
having any antenatal healthcare visits by 3.2pp (19.5%). Among women who used antenatal
healthcare, we find a delay in the first antenatal healthcare visit, as well as a lower probability of
having blood pressure taken or being told about possible complications (among other significant
measures of quality). We also find that women in rural areas exposed to higher levels of
pollution over the last 12 months are less likely to have visited a doctor or a nurse and more

likely to have visited a community health worker instead.
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1. Introduction

It is well known that outdoor air pollution causes inflammation in the lungs and has negative
impacts on respiratory and cardiovascular health (Dominski et al., 2021; Hoek et al., 2013).
More recently, studies have shown that air pollution is also associated with neuroinflammation
and impaired brain functioning (Aguilar-Gomez et al., 2022; Power et al., 2015). Recent research
has also shown that air pollution has important negative effects on women’s reproductive health
outcomes with reduced fertility, longer time to conception, reduced in-vitro fertility treatment
success (Aguilera et al., 2023) as well as higher miscarriage and stillbirth rate (Ha et al., 2022).
Oxidative stress and placental inflammation have been hypothesized as some of the key
mechanisms underlying the relationship between air pollution and reproductive outcomes

(Aguilera et al., 2023; Silvestro et al., 2020).

In addition to direct health impacts, air pollution may also have indirect impacts on
reproduction if people change their behavior to respond to any (anticipated) air pollution effects
on their or their children’s health or non-health outcomes. For example, Gao et al. (2024) find
that higher pollution negatively affects the fertility outcomes of ethnic Han people in China.
Importantly, they find evidence for a behavioral response to air pollution because the fertility
decisions of ethnic minorities not bound by the one-child rule are not affected. In addition, they
find that the fertility choices of people who tend to have higher demand for child quality are
more sensitive to air pollution. Chaijaroen and Panda (2025) similarly find a negative effect of
air pollution on births in Thailand which is accompanied by an increase in short term

contraceptive use by women and is present especially in areas with higher access to information.

In this paper, we examine the relationship between air pollution and reproductive outcomes
in India with a special focus on the use of reproductive healthcare. Our study is thus related to
the literature on air pollution and fertility as well as, more broadly, to the recent literature on
environmental stressors and reproductive healthcare. For example, Nguyen (2025) studies
climate-induced weather shocks and shows that women exposed to drought in the past 12 months
are less likely to use (modern) contraception. Similarly, in a review of the literature, Pappas et al.
(2024) show that extreme weather events (floods, windstorms, and droughts) disrupt maternal
health services. Little is known about how access to reproductive healthcare may be affected by

air pollution.



Air pollution may affect reproductive healthcare if women are less likely to travel outside
the home to get contraception and antenatal care in periods of high air pollution. This may be due
to health concerns as well as a lower willingness to engage in a healthcare system that may be
overwhelmed by patients with pollution-induced respiratory illnesses. Anecdotal evidence from
India shows drastic increases in outpatient visits related to respiratory illnesses in periods of high
air pollution.! Liu et al. (2022) provide evidence consistent with this particular demand-side
mechanism in their study on health-seeking behavior in China. Specifically, they find that higher
monthly air pollution is associated with lower likelihood of visiting a health facility when ill or
injured. In addition, high air pollution has been associated with lower labor productivity both for
indoor (Adhvaryu et al., 2022; Batheja et al., 2025; Chang et al., 2016) and outdoor workers (Hill
et al., 2024; Graff Zivin & Neidell, 2012). A decrease in income due to air pollution may thus

also be associated with lower demand for preventive healthcare and contraception.

In our study, we use information on geographic location to match household survey data
from the fourth round of India’s Demographic and Health Surveys (2015/2016) to data for
satellite-derived surface PM2.5 levels. We then examine the effect of air pollution in the last 12
months on fertility outcomes and the use of reproductive healthcare during this time period. Our
identification strategy relies on using local wind direction as an instrumental variable for air
pollution. We show that, in India, there is no significant short-term effect of air pollution on the
probability of giving birth, but air pollution does increase the incidence of miscarriage.
Specifically, for every 10 pg/msincrease in PM2.5 levels in the 12 months preceding the survey,
the probability of having had a miscarriage during this time period increases by 0.17 percentage
points (pp), or 15.5% over the sample mean. Interestingly, the effect on women living in rural
areas is almost twice as large as the effect on women in urban areas (0.23pp vs 0.12pp). This
suggests that air pollution may also affect miscarriage rates through indirect, non-biological

pathways.

We further test whether air pollution affects access to (quality) reproductive healthcare with a
special focus on differences between rural and urban areas. We find that air pollution lowers the

probability of using modern family planning methods by 4.06pp, or 12.3%. It also reduces both

! https://www.business-standard.com/industry/news/hospitals-report-40-50-rise-in-opd-visits-admissions-
amid-pollution-surge-124111901141 1.html



the access and quality of antenatal healthcare, especially for rural women. On average, air
pollution is associated with a lower likelihood of having any antenatal healthcare visits (effect
size of 3.2pp, or 19.5%), and among the women who used antenatal healthcare, we find a delay
in the first antenatal healthcare visit, as well as a lower probability of having blood pressure
taken or being told about possible complications (among other significant measures of quality).
We also find that women in rural areas exposed to higher levels of pollution over the last 12
months are less likely to have visited a doctor or a nurse and more likely to have visited a
community health worker instead. We further confirm the robustness of our findings using

district-level data from India’s Annual Health Survey (AHS) from 2012/2013.

India is one of the countries with the highest levels of air pollution in the world. Some
regions in the Indo-Gangetic plains (which also have the highest population density in India)
were exposed to as high as 16 times the levels set by the WHO standard of PM2.5 levels below
10ug/m? (Ravishankara et al., 2020). While vehicular and industrial emissions are major sources
of pollution in urban areas, crop burning is a common source of pollution in rural areas, and rural
and urban areas are equally exposed to air pollution (Bikkina et al., 2019). It is estimated that, in
2019, 10.4% of all deaths in India were attributed to ambient particulate matter pollution and the
economic loss due to lost output from related premature deaths and morbidity was 0.84% of
India’s GDP, with significant variation across states (Pandey et al., 2021). Understanding the
total effects of air pollution, including those on reproductive health outcomes, is vital in
quantifying the full costs of air pollution in India. In addition, this study sheds light on the little
studied effects on healthcare services and brings attention to the need to prepare healthcare
services for shocks related to air pollution and other environmental stressors in a developing

country context.
2. Conceptual Framework

Gao et al (2024) incorporate air pollution in a standard quantity-quality fertility model to show
that when the negative effect of air pollution on children’s health and educational outcomes is
considered, increased pollution is expected to increase parental investment per child to mitigate
those negative effects. This would make fertility more expensive and thus lower fertility for
households with higher preferences for child quality, especially when their fertility is constrained

as it is in China by the One Child Policy. In this paper, we test the predictions of their model in



the context of India where no fertility restrictions are present. In addition, we extend the
evidence on the effect of air pollution to the study of the use of contraceptives and antenatal care.
Below we present a simple conceptual framework that illustrates the ways in which air pollution

may affect demand for reproductive healthcare.

Suppose women choose consumption and investment in health to maximize their utility

subject to a budget constraint and a health production function:
maxciU(C,H) s.t. p.C +ppl =Y and H = h(l; €, s, 1)

where p, and p;, represent the marginal cost of the consumption good, C, and the health
investment good, I, respectively. Health (H) is a function of investments in health which build on
a health endowment, €, health shocks, s, as well as community characteristics that determine
access to and quality of healthcare services, p. The reduced-form demand function for the health
investment good can be presented as a function of prices and income, as well as endowments and
shocks: I = f(pn, pe Y; €, 1, 5). This simple model shows that air pollution could affect a

woman’s demand for healthcare in a number of ways.

First, air pollution may reduce demand for healthcare if the cost of the investment good, py,
increases. Health investments can include both monetary and time investments. While there is no
reason to expect the fees for antenatal care or contraceptives to increase due to pollution, the cost
of the time investment is likely to go up. That is because the price of the time investment is the
opportunity cost of time which increases if women have to wait longer for service when health
providers are overwhelmed with patients with respiratory illnesses due to pollution. In addition,
air pollution may increase the psychological cost of the time investment as women may prefer to

stay home and reduce their exposure to air pollution.

Second, air pollution may reduce demand for healthcare if the price of the consumption good
increases or household income decreases. High air pollution can lead to people spending less
time outdoors and, thus, less time working in order to reduce their exposure to air pollution. It
can also lower labor productivity for those who do keep working. This may result in lower

household income and as a result, lower demand for antenatal care or contraceptives.

Third, air pollution may increase demand for healthcare if there is a negative health shock, s.

Air pollution can serve as a negative health shock both to the mother’s health and her unborn



child. Since we are focusing on demand for contraceptives and antenatal health services,
however, this effect may not be present if women are not aware of air pollution affecting the
health of their baby or if they are less sensitive to the quantity-quality tradeoff because of few

restrictions on their fertility.

Finally, air pollution may affect demand for healthcare if it affects the quality and availability
of healthcare services, p. If air pollution causes disruption in the provision of services because of
hospitals being overwhelmed with patients with respiratory illnesses and only lower-quality care
is available, then women may choose to delay seeking antenatal care as it might now have lower
perceived benefit. Similarly, if supply of contraceptives is disrupted, we would see lower use of

modern methods of contraception.

3. Data
3.1 Demographic and Health Survey

For the main analysis, we use nationally representative cross-sectional data from the fourth round
of the Demographic and Health Survey (DHS-4) for India collected from January 2015 to
December 2016. DHS-4 interviewed 699,686 women aged 15-49. DHS data include women’s
full birth history, as well as information on births, miscarriages, and use of contraception and
antenatal healthcare in the 12 months prior to the survey. DHS data also contain information on
various individual and household characteristics including woman’s age, education, area of
residence, religion, caste, and household wealth index. Importantly, DHS also provides the GPS
locations of each survey cluster (equivalent to census villages), randomly displaced by up to 2
km in urban areas and up to 5 km in rural areas (with 1% of rural areas displaced by up to 10
km). We use information on geographic location and month and year of interview to link DHS
data to other geo-coded data (like air pollution, wind and weather controls) for the 12 months

prior to the household survey.
3.2 Air pollution data

Air pollution data on fine particulate matter, PM2.5, are from NASA’s Modern-Era
Retrospective analysis for Research and Applications (MERRA-2) satellite reanalysis project
(Global Modeling and Assimilation Office (GMAO), 2015a). Air pollution data are reported as a
1-hour temporal data with a horizontal resolution of 0.5 x 0.625 degrees grid. Following

Provencal et al. (2017), we first construct the daily average measure of fine particulate matter
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(PM25) from black carbon (BC), organic carbon (OC), windblown mineral dust (DS2.5), sea salt
(SS25), and sulfate (SO4) and then aggregate it to obtain the monthly means for each DHS
cluster. In our sample, the average PM2.5 concentration in the last twelve months prior to the
month of interview is 44.83ug/m> with a standard deviation of 16.33ug/m>. Figures Al and A2
display the area study map and the distribution of PM2.5 averages over 12 months across all

DHS clusters.
3.3 Weather data

Weather data including mean temperature, total precipitation, and wind speed and directions are
downloaded from MERRA-2 Surface Flux Diagnostics datasets available at spatial resolution of
0.5 x 0.625 degrees grid and at hourly frequency (Global Modeling and Assimilation Office
(GMAO), 2015b). We construct the number of days during the study period (the past 12 months)
when the daily wind was blowing in the direction of the NE (0-90 degrees), SE (90-180 degrees),
SW (180-270 degrees), and NW (270-360 degrees). We then divide the number of days the wind

came from each direction by the total number of days in the twelve months to calculate a share.
3.4 Annual Health Survey

As a robustness check, we also use district-level data from the India Annual Health Survey from
2012-2013 - the closest year to our study period with publicly available data.” The Annual Health
Surveys collect information on maternal and child health, including the use of antenatal care, in
nine states with high neonatal deaths: Assam, Bihar, Chhattisgarh, Jharkhand, Madhya Pradesh,
Orissa, Rajasthan, Uttarakhand, and Uttar Pradesh.

4. Empirical specification

The main relationship we would like to estimate could be presented in this simple equation:

yicgmy = BO + BlPMZ-chmy + Xi;t + Vl/cgmylab + ag + 77L'(m) + ni(y) + vicgmy (1)

where the dependent variable, Y;.gm, is the outcome of interest for woman i interviewed in
month m in year y and living in grid-cell c of the geographical region g. The size of the grid-cell

is approximately 53 Km. The variable of interest is fine particulate matter represented as PM2.5

2 Data available here: https://www.data.gov.in/resource/key-indicators-annual-health-survey-ahs-2012-13.
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which is the 12-month average level of PM2.5 concentration in the grid-cell before the month of
interview in survey year y. The term Xi includes a set of individual- and household-level
characteristics that are plausibly unaffected by recent outdoor pollution levels. In particular, the
individual-level characteristics include woman’s age (and age square) and woman’s education
(an indicator for having no education, primary education, incomplete secondary education, and
complete secondary education). The household-level characteristics include indicators for rural
area of residence, Hindu religion, and scheduled castes or scheduled tribes and other backward

castes. The standard errors are clustered at the district level.

We include month of interview, 1; ), and survey year, 1; (), fixed effects to remove any

time trends and seasonality effects. In addition, we include a host of weather controls to account
for the fact that pollution and weather may be correlated.? Specifically, we include the averages
of precipitation, temperature, and wind speed measured at the grid-cell level as well as the square
of these variables to capture non-linearities in the relationship between weather and pollution.
Following Balietti et al. (2022) and Deryugina et al. (2019), we group grid-cells into
geographical regions and include fixed effects for the geographical region of residence, ag, to
account for region-specific omitted variables (more details on the definition of the region below).
The identifying assumption in this specification is that after controlling for observable
individual- and household-level characteristics, seasonality and flexible weather controls,

exposure to pollution is uncorrelated with the error term, vcgpm,,.

One threat to identification is that pollution may be correlated with unobserved individual or
household characteristics. For example, richer and more educated women may have better
information about the effects of pollution on health and may be able relocate away from highly
polluted areas. If these women are also more likely to use antenatal healthcare, for example, this
may artificially create a negative effect of pollution on antenatal healthcare even if there were no
relationship between the two variables. On the other hand, if areas with higher pollution are also

richer areas with more economic activity and better (health) infrastructure, then higher pollution

3 Figure A3 shows the relationship between PM2.5 concentration levels and the mean temperature, total
precipitation, and average wind speed over the 12 months prior to the survey across the study region.
PM2.5 levels are positively associated with mean temperature, while negatively associated with total
precipitation. PM2.5 and wind speed exhibit a non-linear relationship with an inverse U-shape. Low and
high wind speeds are associated with low levels of PM2.5, while moderate wind speeds increase PM2.5
levels.



may be artificially associated with higher use of antenatal healthcare, once again biasing the
coefficient of interest. In addition, classical measurement error in the pollution variable could

bias the coefficient as well.

Consistent with other studies that measure the impacts of air pollution (Balietti et al., 2022;
Bondy et al., 2020; Deryugina et al., 2019; Herrnstadt et al., 2021), we use wind direction as an
instrumental variable to address the endogeneity concerns. Specifically, we explain the variation
in PM2.5 with the share of days in each DHS cluster when wind originated from one of the four
quadrant wind directions (north, east, south, and west). The impact of local wind direction on
local pollution may vary depending on the location of the source of pollution or other geographic
characteristics. That is why, we interact our instrument, local wind direction, with geographical

region and allow the effects of the instrument to vary by region. The estimating equations are:
PMigmy = Yo + 25y Sharell + X5 v, Sharel. + X5 y{ Share;, +

XL')L + I/chmyl:b + ag + m’(m) + 771'(y) + uicg (2)
Yicgmy = .BO + ﬁlmz-chmy + XL'/‘{ + Vl/cgmyw + ag + ni(m) + ni(y) + vicgmy (3)

where Share{". with w € {N, E, S} represents the respective shares of days in the past 12 months

when the wind was blowing from North, East, and South where woman i was living in grid-cell ¢
of the geographical region g. Share}Y®" is the omitted category. The y9 parameters are

estimated based on the variation across all cells within geographical region g.

We follow Balietti et al. (2022) and Deryugina et al. (2019) and use the k-means clustering
algorithm to construct geographical regions based on the latitude and longitude coordinates of
grid-cell centroids. Similar to Balietti et al. (2022), we use 30 regions (which results in 90
excluded instruments in the first stage with 30 regions for each of the three wind directions:
north, east, and south). Figure A4 presents first-stage evidence to motivate our identification
strategy. This illustration shows that the wind directions that statistically explain variations in
pollution levels differ across regions. Table A1l reports the regression results from the first stage.

Wind direction is a strong predictor of air pollution with an F-statistic of 19.194.

5. Results



5.1 Descriptive statistics

Table 1 shows the descriptive statistics for our sample of 699,497 women with non-missing
pollution data. The average age is 29.83 and 34% of women have no formal education. Seventy-
one percent of women live in rural areas. About 8% of women gave birth in the last 12 months
prior to the month of interview and 1.1% had a miscarriage. Only 37% used family planning with
33% using modern contraception. Among women who gave birth, 16% did not use any antenatal
care. Of those who used antenatal care, 53% saw a doctor at some point during their pregnancy

and 47% saw an Auxiliary Nurse Midwife (ANM).
5.2 Effect of pollution on fertility outcomes

In Table 2, we present the results for the effect of air pollution on fertility outcomes
measured over the last 12 months preceding the survey. In column 1, the OLS analysis,
controlling for individual and household characteristics, weather controls and time and region
fixed effects, shows that for every 10 ng/msincrease in PM2.5 levels in the 12 months
preceding the survey (an increase equivalent to close to 72 of the standard deviation of PM2.5),
the probability of giving birth increases by 0.16 percentage points (pp). Given a sample mean of
7.7% of women giving birth in the 12 months prior to the survey, the effect of a 10 ug/ms
increase in PM2.5 levels can be translated to an increase of 2.08% (100*0.16/7.7) in the
probability of giving birth. Accounting for the potential endogeneity in the pollution variable
using an instrumental variable regression model, however, reduces the coefficient by half and the

effect is not statistically significant anymore.

While Gao et al (2024) find a large decrease in the probability of giving birth associated with
air pollution for Han Chinese, it may be the case that Indian households are less responsive to air
pollution compared to Han Chinese because of lack of awareness of the health impacts of air
pollution or inability to control fertility due to worse health infrastructure. To test these
mechanisms, we perform heterogeneity analysis by mother’s education level, area of residence,
and wealth. Columns 2 through 7 of Table 2 summarize these results. We find uniformly
statistically insignificant effects of air pollution on fertility in all of these samples, which
suggests that lack of information or inability to control fertility are likely not the key reason why
we don’t find significant effects in India, although the magnitude of the effects for the less

educated and rural sample is relatively large compared to the effects for the other samples.
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Instead, our results are consistent with Indian households not responding to short-term changes
in pollution levels similar to Gao et al (2024)’s finding on ethnic minorities in China who are not

bound by the one child policy.*

While Indian households may not have a binding constraint on the number of (quality)
children they may have, they may be affected by traditional norms of preference for sons. The
male skewed gender ratio in India has been shown to be due to infanticide and neglect of girls
and elderly women, as well as sex-selective abortions (Calvi, 2020; Nandi & Deolalikar, 2013;
Sahni et al., 2008). Given this context of sex selection that may occur even before birth, it is
possible that women may choose to give birth to a son but not a daughter when exposed to high
levels of pollution. With strong preference for sons, the benefit of having a son may outweigh
any potential health costs associated with having a child affected by air pollution. Next, we test
this hypothesis in column 8 and column 9 of Table 2. While the OLS results are consistent with
our intuition, the IV estimates yield statistically insignificant effects (although they have the

expected signs).’

Overall, considering the main analysis as well as the additional heterogeneity analyses, we
can say we don’t find any strong evidence for short-term effects of air pollution on fertility in the
Indian context. Next, in column 10, we examine the effect of air pollution on the probability of
miscarriage. Both the OLS and IV results show a positive and statistically significant relationship
between higher PM2.5 levels and higher probability of having had a miscarriage in the last 12
months, with the IV results being almost three times larger than the OLS results.® Specifically,
for every 10 ug/msincrease in PM2.5 levels in the 12 months preceding the survey, the
probability of having a miscarriage increases by 0.17pp, or 15.5%, given a baseline of 1.1% of

women having a miscarriage in that time period. The effect is economically and statistically

* We also test the medium-term effect of air pollution where we average air pollution levels over the last
three years prior to the survey year. We see that rural households in particular respond to higher air
pollution levels over the medium term by increasing their fertility by 0.61 pp (7.9%). The effect for urban
households is smaller (0.16pp) and statistically insignificant.

3> We further perform heterogeneity analysis by district sex ratio. We find small and statistically
insignificant effects on birth, birth of a son and birth of a daughter both for districts with below median
sex ratio and districts with above median sex ratio.

® This suggests a downward bias possibly due to positive correlation between pollution and
district/household income and a negative correlation between district/household income and probability
of a miscarriage.
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significant and is present for the samples of women with and without secondary education, rural

and urban areas and poor and non-poor households (Table A2).

This is consistent with a strong biological effect of pollution on miscarriage rates, as already
well-established in the literature. Interestigly, however, the effect on miscarriage rates is almost
twice as large in rural areas (0.23 pp) as it is in urban areas (0.13pp) — also consistent with the
large, although not statistically significant, effect of pollution on the probability of giving birth in
rural areas. One reason for the difference in miscarriage rates between rural and urban areas
could be that air pollution levels in rural areas are higher than air pollution levels in urban areas.
In our sample, however, this doesn’t appear to be the case. The average air pollution level for
rural areas is 45.0 ug/m> with a standard deviation of 16.2 ug/m? compared to average air
pollution level of 44.4 ug/m* with a standard deviation of 16.7 ug/m?> for urban areas. Another
reason could be that women in urban areas are better able to avoid pollution if they have access
to air filters or have others means of avoiding high levels of pollution exposure, including
spending less time working outdoors. Yet, Jafarov et al. (2023) report that air filtration is not
widespread and there isn’t a strong impact of air pollution on time use among urban households.
Another explanation could be better access to (quality) reproductive healthcare services in urban
areas compared to rural areas. Next, we test the effect of air pollution on reproductive healthcare

with a special focus on differences between urban and rural areas.

5.3 Effect of pollution on reproductive healthcare

5.3.1 Effect on use of contraception

First, in order to test the hypothesis of changes in access to (quality) reproductive healthcare, we
examine the effect of air pollution on the use of family planning methods. Table 3 shows that,
overall, higher air pollution is associated with a lower probability of using any family planning
method, with large decreases in the probability of using modern contraception, which are not
entirely offset by the higher probability of using traditional methods. Specifically, the
instrumental variables analysis shows that an increase of 10 ug/msin PM2.5 levels in the 12
months preceding the survey decreases the probability of using modern contraception by 4.06pp
and increases the probability of using traditional methods by 1.29pp. Splitting the sample by area
of residence (rural versus urban), we see that while both rural and urban households have a

significant reduction in the use of modern contraception, the decrease for urban households is
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less than half the size of the decrease for rural households (1.93pp vs 5.07pp) and is mostly
offset by an increase in the use of traditional family planning methods. As a result, the effect of
air pollution on the overall probability of using any family planning methods is small in
magnitude and not statistically significant for urban households (0.43pp) but large and
statistically significant for rural households (3.35pp). Our results are similar to the findings in
Nguyen (2025) who shows that drought exposure in the 12 months prior to the survey is

associated with a 4.4pp reduction in the probability of using modern contraception in Vietnam.

This result is consistent with air pollution causing a larger disruption in the access to
modern family planning methods in rural areas compared to urban areas and could explain why
we see a relatively large (although not statistically significant) positive effect of air pollution on
the probability of having a recent birth in rural areas. Another explanation for this finding could
be that air pollution causes a greater shock to labor productivity and income in rural areas than
urban areas because labor supply in rural areas and among self-employed or casual workers is
more flexible.” Thus, women in rural areas may be less able to afford modern contraception.
Lack of access to modern contraception, whether due to supply-side or demand-side
considerations, could be contribute to the higher (even if not statistically significant) birth rates
in rural areas. If rural women are more likely to conceive, they may also be more likely to have a

miscarriage compared to urban women.
Next, we study the effect of air pollution on access to (quality) antenatal care.
5.3.2 Effect on antenatal care

In Table 4, we present the results of the instrumental variables analysis for usage of antenatal
healthcare for all women who have given birth in the last 12 months. We show that in the full
sample, for every 10 ug/msincrease in PM2.5 levels in the 12 months preceding the survey,
there is a 3.2pp increase in the probability of not using antenatal healthcare, which corresponds
to a 19.5% increase relative to the sample mean probability. The effect is even larger in rural

areas (4.22pp) but also present in urban areas (1.74pp). Even if we consider the difference in

" For example, Jafarov et al. (2023) show that higher air pollution in India is associated with reductions in
time spent on outdoor labor activities for those who are self-employed and casual-laborers and they also
show no effect on urban residents. At the same time, Gupta et al. (2017) and Merfeld (2023) find a
negative effect on agricultural production in rural India.
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baseline probability of no antenatal healthcare between rural and urban areas, the differences in
effect sizes remain (effect of 22.8% for rural areas given a sample mean of 18.5% of women not
receiving antenatal care in rural areas, and effect of 18.5% for urban areas given a sample mean
0f 9.4%). We also find that women in both rural and urban areas who do get antenatal care are
significantly more likely to delay their first antenatal healthcare appointment. And women in
both rural and urban areas are significantly less likely to have taken iron pills (for anemia) in the

last 12 months preceding the survey.

Next, we attempt to examine the quality of antenatal healthcare received using information
on whether women were weighed, had their blood pressure taken, gave a urine sample, gave
blood, and were told about possible complications. The results are summarized in Columns 4
through 9 of Table 4. Across all measures and across all samples, we find large and statistically
significantly negative effects of air pollution on the quality of healthcare and once again, larger

effect sizes in rural areas than urban areas.

In Table 5, we further examine whether changes in air pollution are associated with changes
in the provider of antenatal healthcare. In rural areas, we see that higher air pollution has a
statistically significantly negative effect on the probability of receiving antenatal care from the
more qualified doctors (3.57pp) and Auxiliary Nurse Midwives, ANM (4.26pp), and an increase
in the probability of receiving care from the less qualified community health workers (including
accredited social health activists (ASHA)). We see smaller and statistically insignificant effects
on the use of these providers for urban areas. Urban women are more likely to report seeing other
providers, although the effect is small (0.14pp), and less likely to see Anganwadi workers

(1.55pp), who are usually responsible for health and nutrition services.

Overall, there are two key implications of these results. First, the results suggest that air
pollution changes access to (quality) healthcare whether because of supply-side constraints when
health centers get overwhelmed with patients with respiratory illnesses due to pollution or
because of demand-side constraints if women are less willing or able to travel to a health center
because of health concerns, long waiting times, or cost considerations. This is consistent with the
study by Liu et al (2022) which shows that higher monthly air pollution in China is associated
with lower likelihood of visiting a health facility when ill or injured. The effect sizes in Liu et al

(2022) are remarkably similar to our results —a 10ug/m3 increase in monthly average PM2.5

14



was associated with an 18% increase in the probability of refraining from visiting health
facilities. The second implication of our results is that the worsening of access to (quality)
antenatal healthcare could have contributed to the higher miscarriage rates if it resulted in a
failure to detect pollution-induced risk factors associated with miscarriage such as infections,
anemia and hypertension although this type of mediator analysis is beyond the scope of the

paper.®
5.3.3 Analysis using the Annual Health Survey

To further test the robustness of our novel findings, we use district-level data from India’s
Annual Health Survey. We regress district-level reproductive healthcare indicators for the study
period (2012-2013) on district average PM2.5 level in 2012 and include weather controls and
region fixed effects, similar to our main household-level specification. The results are presented
in Table A3. We find large and statistically significant positive effects of PM2.5 pollution levels
on the proportion of women having an abortion (which may include spontaneous abortions, i.e.,
miscarriages, or may be an indicator of the increase in undesired pregnancies due to the reduced
use of contraceptives). Similar to our main results, we also see negative effects on the use of
contraceptives (especially modern contraceptives) and on access to (quality) reproductive
healthcare: a smaller proportion of women received any ANC, received the full schedule of
ANC, as well as had ANC before the abortion or an abortion by a skilled professional. Overall,

the analysis using data from the AHS supports the robustness of our results.
6. Conclusion

Air pollution has been shown to have wide-ranging negative effects on health, including effects
on fertility. Less is known about the way people respond to high levels of air pollution and the
indirect effects of air pollution on fertility. This paper examines the effect of PM2.5 levels on
reproductive health in India — one of the countries with the highest levels of air pollution in the
world. We show no short-term changes in the probability of giving birth but significant increases

in miscarriage probability. We also find that a higher level of air pollution in the past twelve

8 One caveat of this analysis is that the survey data contains information on antenatal healthcare for all women who
have given birth in the last 12 months but does not include women who have had a miscarriage (unless they already
have had a successful pregnancy during that time period — which only 7% of them do). We assume the findings are
broadly applicable to all women.
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months is associated with a significant reduction in access to reproductive healthcare during that
time period. Specifically, we find that women exposed to higher PM2.5 levels were less likely to
use modern methods of contraception and less likely to use antenatal healthcare if they got
pregnant. Further, air pollution affected the types of providers women were likely to see for
antenatal care, reducing the probability of them seeing a more qualified doctor or nurse and
increasing the probability of seeing a less qualified community health worker. Further work is
needed to establish to what extent women’s lower access to (quality) reproductive healthcare is
due to supply-side and demand-side factors and whether better access to reproductive healthcare

can mitigate some of the negative impacts of air pollution on miscarriage rates.
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Figures and Tables

Table 1. Individual- and Household-level Summary Statistics

Variable Mean SD
Birth outcome:

Birth in the last 12 months 0.077 0.27
Miscarriage in the last 12 months 0.011 0.10
Contraceptive use in the last 12 months:

Family planning method 0.374 0.48
Modern family planning method 0.329 0.47
Traditional family planning method 0.045 0.21
If given birth in the last 12 months:

Saw a doctor for ANC 0.543 0.50
Saw ANM for ANC 0.467 0.50
Saw traditional healer for ANC 0.008 0.09
Saw CHW for ANC 0.005 0.07
Saw Anganwadi worker for ANC 0.106 0.31
Saw Asha worker for ANC 0.065 0.25
Saw other worker for ANC 0.002 0.04
Did not have any ANC 0.164 0.37
Month of 1st ANC visit 3.325 1.58
Number of ANC visits (conditional on any) 5.056 4.21
Weighed at ANC visit 0.897 0.30
Blood Pressure taken at ANC visit 0.894 0.31
Urine sample taken at ANC visit 0.86 0.35
Blood sample taken at ANC visit 0.87 0.34
Told about possible complications during ANC visits 0.621 0.49
Took iron pills 0.793 0.55
Individual-level characteristics:

Age 29.829 9.76
No education 0.339 0.47
Primary education only 0.068 0.25
Incomplete secondary education 0.391 0.49
Secondary education or more 0.087 0.28
Household-level characteristics:

Rural 0.706 0.46
Hindu 0.743 0.44
Scheduled Castes/Scheduled Tribes 0.359 0.48
Other Backward Castes 0.392 0.49

Notes: The overall sample size is 696,497. Modern methods include sterilization of women and
men, using IUDs/copper-t/loop, oral pills, male and female condoms, and other modern methods.
Traditional methods include using rhythm, periodically abstaining, withdrawing, and other
methods. ANC and ANM refer to Antenatal Care and Auxiliary Nurse Midwife, respectively.
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Table 2. Effect of Air Pollution on Fertility Outcomes

Dependent Overall Mother with no Mother with Rural Urban
variable: Binary education or some
(0/1) primary education secondary
only education
Q) 2) 3) 4 ()
Panel A: OLS estimates
PM2.5 (ug/m3)  0.00016™ 0.00026™ -0.00001 0.00022* -0.00002
(0.00008) (0.00010) (0.00009) (0.00010) (0.00009)
Panel B: IV estimates using wind directions
PM2.5 (ug/m?) 0.00006 0.00018 -0.00009 0.00025 -0.00005
(0.00012) (0.00014) (0.00019) (0.00020) (0.00012)
Mean of 0.077 0.077 0.077 0.084 0.060
dependent
variable
First-stage (F- 19.194 18.593 20.514 21.500 18.822
test)
Observations 696,497 363,140 333,357 491,920 204,104
Poor Non-poor Give birthtoa Givebirthtoa Incidence of
households households girl in the last  boy in the last ~ miscarriage
12 months 12 months
() (1 () (©)] (10)
Panel A: OLS estimates
PM2.5 (ug/m3) 0.00018 -0.00001 0.00003 0.00013"™ 0.00006™"
(0.00012) (0.00008) (0.00004) (0.00005) (0.00002)
Panel B: IV estimates using wind directions
PM2.5 (ug/m3)  -0.00006 -0.00004 -0.00003 0.00009 0.00017"*
(0.00017) (0.00011) (0.00028) (0.00007) (0.00003)
Mean of 0.095 0.065 0.037 0.041 0.011
dependent
variable
First-stage (F- 22.341 16.766 19.194 19.194 19.194
test)
Observations 281,104 415,393 696,497 696,497 696,497

Notes: Standard errors reported in parentheses are clustered at the district level. The number of clusters is
640. The dependent variable in columns 1 through 7 is whether a woman has given birth in the past 12
months before the survey. All regressions include individual and household-level characteristics, weather
controls, as well as fixed effects for geographic regions, the month of interview, and survey year.
**denotes significance at the 5% level and ***denotes significance at the 1% level.
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Table 3. Effect of Air Pollution on the Use of Contraception

Dependent variable: Binary (0/1) Any method Modern method Traditional method
(@) 2) 3)

Panel Al: OLS estimates (overall sample)

PM2.5 (ug/m3) -0.00230™" -0.00309™*" 0.00079™*"
(0.00052) (0.00048) (0.00020)

Panel Bl: 1V estimates using wind directions (overall sample)

PM2.5 (ug/m?) -0.00277*" -0.00406™" 0.00129™
(0.00065) (0.00055) (0.00030)

Mean of dependent variable 0.373 0.328 0.045

First-stage (F-test) 19.194 19.194 19.194

Observations 696,497 696,497 696,497

Panel A2: OLS estimates (rural sample)

PM2.5 (ug/m3) -0.00282™*" -0.00366"*" 0.00085™*"
(0.00055) (0.00050) (0.00020)

Panel B2: 1V estimates using wind directions (rural sample)

PM2.5 (ug/m3) -0.00335™" -0.00507"*" 0.00172"*
(0.00099) (0.00084) (0.00042)

Mean of dependent variable 0.370 0.325 0.045

First-stage (F-test) 21.500 21.500 21.500

Observations 491,920 491,920 491,920

Panel A3: OLS estimates (urban sample)

PM2.5 (ug/m3) -0.00059 -0.001427*" 0.00083™*"
(0.00053) (0.00054) (0.00029)

Panel B3: 1V estimates using wind directions (urban sample)

PM2.5 (ug/m3) -0.00043 -0.00193™*" 0.001517*
(0.00067) (0.00061) (0.00040)

Mean of dependent variable 0.381 0.336 0.045

First-stage (F-test) 18.822 18.822 18.822

Observations 204,577 204,577 204,577

Notes: Standard errors reported in parentheses are clustered at the district level. The number of clusters is
640 for the overall sample, 627 for the rural sample, and 637 for the urban sample. Any method refers to

the combination of modern and traditional methods of contraception. Modern methods include
sterilization of women and men, using IUDs/copper-t/loop, oral pills, male and female condoms, and

other modern methods. Traditional methods include using rhythm, periodically abstaining, withdrawing,

and other methods. All regressions include individual and household-level characteristics, weather
controls, as well as fixed effects for geographic regions, the month of interview, and survey year.

***denotes significance at the 1% level.
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Table 4. Effects of Air Pollution on Access and Quality of Antenatal Health Care

Woman’s Access to Antenatal Care

No Month of Number of Took iron
antenatal first antenatal visits pills
care antenatal (conditional on
care any)
(1) @) 3) (4)
Panel A: All residences
PM2.5 (ug/m3) 0.00320""  0.01044"*" -0.00702 -0.00511™
(0.00091) (0.00242) (0.00824) (0.00085)
Mean of dep. var. 0.164 3.325 5.056 0.793
Observations 53,883 44,940 44,612 53,883
F-stat 19.412 20.158 20.158 19.412
Panel B: Only rural residence
PM2.5 (ug/m3) 0.00422"*  0.01097™*" -0.01317 -0.00457"*
(0.00136) (0.00348) (0.01091) (0.00125)
Mean of dep. var. 0.185 3.401 4.720 0.774
Observations 41,592 33,818 33,593 41,592
F-stat 21.811 22.202 22.326 21.811
Panel C: Only urban residence
PM2.5 (ug/m3) 0.00174" 0.01524™ -0.01563 -0.00406™"
(0.00102) (0.00424) (0.01357) (0.00124)
Mean of dep. var. 0.094 3.094 6.081 0.857
Observations 12,291 11,122 11,019 12,291
F-stat 19.382 19.054 19.230 19.382
Quality of Antenatal Care
Weighed BP taken Urine sample Blood taken Told about
given possible
complications
) (6) () ®) (€]
Panel Al: All residences
PM2.5 (ug/m3)  -0.00643""  -0.00649"*" -0.00621*" -0.00689™" -0.00646™"
(0.00069) (0.00064) (0.00068) (0.00069) (0.00094)
Mean of dep. var. 0.897 0.894 0.860 0.870 0.621
Observations 45,048 45,048 45,048 45,048 45,048
F-stat 20.125 20.125 20.125 20.125 20.125
Panel Bl: Only rural residence
PM2.5 (ug/m3)  -0.00734™"  -0.00801""" -0.00689"" -0.00823"* -0.00697"*
(0.00103) (0.00102) (0.00103) (0.00111) (0.00138)
Mean of dep. var. 0.886 0.876 0.841 0.848 0.611
Observations 33,913 33,913 33,913 33,913 33,913
F-stat 22.191 22.191 22.191 22.191 22.191
Panel C1: Only urban residence
PM2.5 (ug/m3)  -0.00463""  -0.00398"*" -0.00528™ -0.00455™" -0.00551*"
(0.00077) (0.00062) (0.00083) (0.00066) (0.00121)
Mean of dep. var. 0.932 0.947 0.919 0.938 0.652
Observations 11,135 11,135 11,135 11,135 11,135
F-stat 18.962 18.962 18.962 18.962 18.962

Notes: Standard errors reported in parentheses are clustered at the district level. All regressions include
individual and household-level characteristics, weather controls, as well as fixed effects for geographic
regions, the month of interview, and survey year.

* denotes significance at the 10% level, **denotes significance at the 5% level, and ***denotes
significance at the 1% level.
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Table 5. Effect of Air Pollution on Providers of Antenatal Health Care

Visit ANM CHW ASHA Anganwadi  Traditional Other
doctor nurse health health
worker worker
A 2) 3) “) ) (0) (@)

Panel A: All residences

PM2.5 -0.00118  -0.00504™"  0.00011"  0.00104™  -0.00122* -0.00002 0.00011"
(ug/m?) (0.00117)  (0.00125)  (0.00006)  (0.00043) (0.00053) (0.00008) (0.00006)
Mean of dep. 0.543 0.467 0.005 0.065 0.105 0.008 0.002
var.

Observations 53,883 53,883 53,883 53,883 53,883 53,883 53,883
F-stat 19.412 19.412 19.412 19.412 19.412 19.412 19.412
Panel B: Only rural residence

PM2.5 -0.00357""  -0.00426™  0.00026™  0.00126" -0.00188™ -0.00014 0.00010
(ug/m?3) (0.00180)  (0.00182)  (0.00010)  (0.00069) (0.00085) (0.00014) (0.00009)
Mean of dep. 0.494 0.473 0.005 0.076 0.116 0.009 0.002
var.

Observations 41,592 41,592 41,592 41,592 41,592 41,592 41,592
F-stat 21.811 21.811 21.811 21.811 21.811 21.811 21.811
Panel C: Only urban residence

PM2.5 -0.00228 -0.00117 0.00001 0.00039 -0.00155™ 0.00005 0.00014™
(ug/m?) (0.00145)  (0.00143)  (0.00010)  (0.00044) (0.00063) (0.00011) (0.00005)
Mean of dep. 0.711 0.445 0.005 0.029 0.069 0.007 0.001
var.

Observations 12,291 12,291 12,291 12,291 12,291 12,291 12,291
F-stat 19.382 19.382 19.382 19.382 19.382 19.382 19.382

Notes: Standard errors reported in parentheses are clustered at the district level. All regressions include
individual and household-level characteristics, weather controls, as well as fixed effects for geographic
regions, the month of interview, and survey year.

* denotes significance at the 10% level, **denotes significance at the 5% level, and ***denotes
significance at the 1% level.
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Appendix Figures and Tables

PM2p5
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- Missing

+ %

Figure Al. Map of the Study Area

Note: The dots represent the average 12-month PM2.5 levels (in ug/m?) for DHS clusters in the

survey period. The number of DHS clusters is 28,330. The district boundaries are shown in gray.
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Figure A3. PM2.5 concentration levels and the Weather Bin Scatterplot
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Figure A4. Annual wind direction and PM2.5: first stage estimates by regions.

Note: The figure is obtained by regressing PM2.5 on the interaction term between the share of
wind directions and geographic clusters, controlling for geographic regions, interview month,
and year of interview FEs. Standard errors are clustered at the district level. The coefficients are
represented by a solid blue line, while the 95% confidence interval is represented by a dashed

line.
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Table Al. First-stage regression results

PM2.5

Share of the wind from the North, region 1
Share of the wind from the North, region 2
Share of the wind from the North, region 3
Share of the wind from the North, region 4
Share of the wind from the North, region 5
Share of the wind from the North, region 6
Share of the wind from the North, region 7
Share of the wind from the North, region 8
Share of the wind from the North, region 9
Share of the wind from the North, region 10
Share of the wind from the North, region 11
Share of the wind from the North, region 12
Share of the wind from the North, region 13
Share of the wind from the North, region 14
Share of the wind from the North, region 15
Share of the wind from the North, region 16
Share of the wind from the North, region 17
Share of the wind from the North, region 18
Share of the wind from the North, region 19
Share of the wind from the North, region 20
Share of the wind from the North, region 21
Share of the wind from the North, region 22

Share of the wind from the North, region 23

Share of the wind from the North, region 24

29

26.18
(-3.31)
-32.35"
(-3.60)
-53.34°
(-2.15)
7.638
(0.48)
-18.06™
(-2.59)
-68.06™
(-4.70)
-102.3"™
(-9.55)
-69.85™
(-3.29)
4.782
(1.34)
1.063
(0.03)
3.738
(0.33)
-57.58"
(-3.84)
76.31
(-5.89)
16.79
(0.56)
-63.89™
(-2.98)
-46.92°
(-2.36)
-63.59"
(-3.68)
-10.23
(-0.37)
37.41°
(-2.29)
-4.604
(-0.38)
-52.59"
(-3.39)
21.34
(0.67)
-52.63"
(-6.81)

-72.35™



Share of the wind from the North, region 25
Share of the wind from the North, region 26
Share of the wind from the North, region 27
Share of the wind from the North, region 28
Share of the wind from the North, region 29
Share of the wind from the North, region 30
Share of the wind from the East, region 1
Share of the wind from the East, region 2
Share of the wind from the East, region 3
Share of the wind from the East, region 4
Share of the wind from the East, region 5
Share of the wind from the East, region 6
Share of the wind from the East, region 7
Share of the wind from the East, region 8
Share of the wind from the East, region 9
Share of the wind from the East, region 10
Share of the wind from the East, region 11
Share of the wind from the East, region 12
Share of the wind from the East, region 13
Share of the wind from the East, region 14
Share of the wind from the East, region 15
Share of the wind from the East, region 16
Share of the wind from the East, region 17

Share of the wind from the East, region 18

Share of the wind from the East, region 19

30

(-4.98)
32.36
(0.97)
18.44°
(3.19)
17.96
(1.33)
-75.647
(-10.66)
-23.63
(-1.35)
-99.94™**
(-6.97)
6.694
(0.60)
34.64°
(-5.41)
22.67°
2.91)
51.03"
(2.34)
20.61°
(3.00)
-29.09™
(-2.66)
1343
(-6.87)
-1.916
(-0.30)
-2.695
(-0.31)
4.052
(0.25)
13.69
(1.07)
-36.44
(-1.77)
6845
(-6.34)
18.59
(0.78)
-3.624
(-0.39)
55.44"
(3.57)
1.184
(0.04)
9.206
(0.89)

-3.066



Share of the wind from the East, region 20
Share of the wind from the East, region 21
Share of the wind from the East, region 22
Share of the wind from the East, region 23
Share of the wind from the East, region 24
Share of the wind from the East, region 25
Share of the wind from the East, region 26
Share of the wind from the East, region 27
Share of the wind from the East, region 28
Share of the wind from the East, region 29
Share of the wind from the East, region 30
Share of the wind from the South, region 1
Share of the wind from the South, region 2
Share of the wind from the South, region 3
Share of the wind from the South, region 4
Share of the wind from the South, region 5
Share of the wind from the South, region 6
Share of the wind from the South, region 7
Share of the wind from the South, region 8
Share of the wind from the South, region 9
Share of the wind from the South, region 10
Share of the wind from the South, region 11
Share of the wind from the South, region 12

Share of the wind from the South, region 13

Share of the wind from the South, region 14

31

(-0.22)
4581
(3.57)
-45.03
(-1.29)
24.52
(0.88)
6.773
(1.11)
21.73
(1.15)
40.86
(1.90)
91.30™
(-6.00)
44.49"
(5.57)
42,95
(-5.18)
32.34°
(2.25)
-18.58
(-1.23)
-11.41
(-1.02)
14.76
(1.54)
43,58
(4.14)
73.87"
(4.78)
3.528
(0.34)
53.17°
(-4.51)
-129.3"
(-8.48)
16.47°
(2.27)
16.47"
(3.44)
31.37°
(2.13)
39.59"
(3.75)
-56.18"
(-3.34)
-92.55"
(-9.46)

20.64



Share of the wind from the South, region 15
Share of the wind from the South, region 16
Share of the wind from the South, region 17
Share of the wind from the South, region 18
Share of the wind from the South, region 19
Share of the wind from the South, region 20
Share of the wind from the South, region 21
Share of the wind from the South, region 22
Share of the wind from the South, region 23
Share of the wind from the South, region 24
Share of the wind from the South, region 25
Share of the wind from the South, region 26
Share of the wind from the South, region 27
Share of the wind from the South, region 28
Share of the wind from the South, region 29
Share of the wind from the South, region 30

Individual-level characteristics
Woman’s current age

Woman’s age square

Woman's education:
No education

Primary education
Incomplete secondary education
Secondary education

Household-level characteristics
Rural

Religion (Hindu = 1)

32

(0.98)
-3.417
(-0.28)

83.83"
(3.66)
-25.54
(-1.16)

13.38
(1.26)
2.21°
(2.04)
43.43™
(4.08)

-68.22°
(-2.49)
26.29
(0.86)
6.812
(0.91)
-8.026
(-0.52)
49 43"
(2.87)

50.47"
(9.53)
23.11°
(2.18)

51.19™
(-5.31)

57.64"
(4.09)

-38.81"
(-2.61)

0.00578
(0.70)
-0.000249°
(-2.15)

0.507"*
(3.79)
0.0859
(0.79)
0.192
(2.73)

0.296™*
4.71)

0.349"
(1.97)
-0.368



(-1.64)

Social class (SC/ST =1) -0.257
(-1.59)
Social class (OBC = 1) 0.0769
(0.61)
Weather controls
Mean temperature -22.18™
(-3.98)
Mean temperature square 0.0429""
(4.40)
Total precipitation -0.0128"
(-4.02)
Total precipitation square 0.00000639™*
(5.02)
Wind speed 19.71™
(7.03)
Wind speed square 22727
(-7.86)
Geographical regions FEs Yes
Month of interview FEs Yes
Survey year FEs Yes
Observations 696,497
F-stat 19.194

Notes: t statistics in parentheses. Level of significance: * p<0.05, ** p<0.01, *** p<0.001.
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Table A2. Effect of Air Pollution on the Incidence of Miscarriage, Disaggregated by Education,
Type of Residence, and Household Wealth

Full Mother with Mother Rural Urban Poor Non-Poor
sample  no education with some
or primary  secondary
education education

only

(@) 2) 3) (4) ) (6) (7
PM2.5 0.00017**  0.00018™*  0.00019"" 0.00023"" 0.00012"" 0.00018"" 0.00015™*"
(ug/m3) (0.00003) (0.00004) (0.00006) (0.00005) (0.00005) (0.00004) (0.00004)
Mean of dep. 0.011 0.010 0.012 0.011 0.011 0.011 0.011
var.
Observations 696,497 363,140 333,357 491,920 204,577 281,104 415,393
F-stat 19.194 18.593 19.927 21.500 18.822 22.341 16.766

Notes: Standard errors reported in parentheses are clustered at the district level. All regressions include
individual and household-level characteristics, weather controls, as well as fixed effects for geographic
regions, the month of interview, and survey year.

**denotes significance at the 5% level and ***denotes significance at the 1% level.
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Table A3. Effect of Air Pollution on Reproductive Health Care Using India’s Annual Health

Survey
Abortion ANC before Abortion by Use of any
abortion skilled contraceptive
provider
PM2.5 0.07061 -0.38046 -0.40050 -0.60722
(ug/m?) (0.02731) (0.10832) (0.15137) (0.08902)
Mean of dep. 4.947 47.544 55.262 59.695
var.
Number of 281 281 281 281
districts
F-stat 43.036 43.036 43.036 43.036
Use modern Use traditional Any ANC Schedule of
contraceptive contraceptive ANC
method method

PM2.5 -0.93444 0.32649 -0.09823 -0.10633
(ug/m3) (0.07841) (0.06891) (0.05675) (0.04925)
Mean of dep. 46.986 12.711 90.020 70.140
var.
Observations 281 281 281 281
F-stat 43.036 43.036 43.036 43.036

Notes: Standard errors reported in parentheses are clustered at the district level. All regression includes

weather controls and region fixed effects.
* denotes significance at the 10% level and ***denotes significance at the 1% level.
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