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Air Pollution and Women’s Reproductive Health and Healthcare in India 

 

Abstract 

Air pollution has been shown to have wide-ranging negative effects on health, including effects 

on fertility. Less is known about the way people respond to high levels of air pollution and the 

indirect effects air pollution may have on access to reproductive healthcare. This paper merges 

data from India’s Demographic and Health Surveys (2015/2016) to satellite-derived PM2.5 data 

to estimate the effect of air pollution in India on fertility outcomes and the use of reproductive 

healthcare. To address endogeneity concerns, we use local wind direction as an instrumental 

variable for air pollution. We find no significant short-term effect of air pollution on the 

probability of giving birth, but for every 10 𝜇𝑔/𝑚3 increase in PM2.5 levels in the 12 months 

preceding the survey, the probability of having had a miscarriage during this time period 

increases by 0.17 percentage points (pp), or 15.5% over the sample mean. Air pollution also 

reduces the likelihood of using modern family planning methods by 4.06pp (12.3%) and of 

having any antenatal healthcare visits by 3.2pp (19.5%). Among women who used antenatal 

healthcare, we find a delay in the first antenatal healthcare visit, as well as a lower probability of 

having blood pressure taken or being told about possible complications (among other significant 

measures of quality). We also find that women in rural areas exposed to higher levels of 

pollution over the last 12 months are less likely to have visited a doctor or a nurse and more 

likely to have visited a community health worker instead. 
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1. Introduction 

It is well known that outdoor air pollution causes inflammation in the lungs and has negative 

impacts on respiratory and cardiovascular health (Dominski et al., 2021; Hoek et al., 2013). 

More recently, studies have shown that air pollution is also associated with neuroinflammation 

and impaired brain functioning (Aguilar-Gomez et al., 2022; Power et al., 2015). Recent research 

has also shown that air pollution has important negative effects on women’s reproductive health 

outcomes with reduced fertility, longer time to conception, reduced in-vitro fertility treatment 

success (Aguilera et al., 2023) as well as higher miscarriage and stillbirth rate (Ha et al., 2022). 

Oxidative stress and placental inflammation have been hypothesized as some of the key 

mechanisms underlying the relationship between air pollution and reproductive outcomes 

(Aguilera et al., 2023; Silvestro et al., 2020).  

 In addition to direct health impacts, air pollution may also have indirect impacts on 

reproduction if people change their behavior to respond to any (anticipated) air pollution effects 

on their or their children’s health or non-health outcomes. For example, Gao et al. (2024) find 

that higher pollution negatively affects the fertility outcomes of ethnic Han people in China. 

Importantly, they find evidence for a behavioral response to air pollution because the fertility 

decisions of ethnic minorities not bound by the one-child rule are not affected. In addition, they 

find that the fertility choices of people who tend to have higher demand for child quality are 

more sensitive to air pollution. Chaijaroen and Panda (2025) similarly find a negative effect of 

air pollution on births in Thailand which is accompanied by an increase in short term 

contraceptive use by women and is present especially in areas with higher access to information.  

In this paper, we examine the relationship between air pollution and reproductive outcomes 

in India with a special focus on the use of reproductive healthcare. Our study is thus related to 

the literature on air pollution and fertility as well as, more broadly, to the recent literature on 

environmental stressors and reproductive healthcare. For example, Nguyen (2025) studies 

climate-induced weather shocks and shows that women exposed to drought in the past 12 months 

are less likely to use (modern) contraception. Similarly, in a review of the literature, Pappas et al. 

(2024) show that extreme weather events (floods, windstorms, and droughts) disrupt maternal 

health services. Little is known about how access to reproductive healthcare may be affected by 

air pollution. 
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 Air pollution may affect reproductive healthcare if women are less likely to travel outside 

the home to get contraception and antenatal care in periods of high air pollution. This may be due 

to health concerns as well as a lower willingness to engage in a healthcare system that may be 

overwhelmed by patients with pollution-induced respiratory illnesses. Anecdotal evidence from 

India shows drastic increases in outpatient visits related to respiratory illnesses in periods of high 

air pollution.1  Liu et al. (2022) provide evidence consistent with this particular demand-side 

mechanism in their study on health-seeking behavior in China. Specifically, they find that higher 

monthly air pollution is associated with lower likelihood of visiting a health facility when ill or 

injured. In addition, high air pollution has been associated with lower labor productivity both for 

indoor (Adhvaryu et al., 2022; Batheja et al., 2025; Chang et al., 2016) and outdoor workers (Hill 

et al., 2024; Graff Zivin & Neidell, 2012). A decrease in income due to air pollution may thus 

also be associated with lower demand for preventive healthcare and contraception.  

In our study, we use information on geographic location to match household survey data 

from the fourth round of India’s Demographic and Health Surveys (2015/2016) to data for 

satellite-derived surface PM2.5 levels. We then examine the effect of air pollution in the last 12 

months on fertility outcomes and the use of reproductive healthcare during this time period. Our 

identification strategy relies on using local wind direction as an instrumental variable for air 

pollution. We show that, in India, there is no significant short-term effect of air pollution on the 

probability of giving birth, but air pollution does increase the incidence of miscarriage. 

Specifically, for every 10 𝜇𝑔/𝑚3 increase in PM2.5 levels in the 12 months preceding the survey, 

the probability of having had a miscarriage during this time period increases by 0.17 percentage 

points (pp), or 15.5% over the sample mean. Interestingly, the effect on women living in rural 

areas is almost twice as large as the effect on women in urban areas (0.23pp vs 0.12pp). This 

suggests that air pollution may also affect miscarriage rates through indirect, non-biological 

pathways.  

We further test whether air pollution affects access to (quality) reproductive healthcare with a 

special focus on differences between rural and urban areas. We find that air pollution lowers the 

probability of using modern family planning methods by 4.06pp, or 12.3%. It also reduces both 

 
1 https://www.business-standard.com/industry/news/hospitals-report-40-50-rise-in-opd-visits-admissions-

amid-pollution-surge-124111901141_1.html  



4 
 

the access and quality of antenatal healthcare, especially for rural women. On average, air 

pollution is associated with a lower likelihood of having any antenatal healthcare visits (effect 

size of 3.2pp, or 19.5%), and among the women who used antenatal healthcare, we find a delay 

in the first antenatal healthcare visit, as well as a lower probability of having blood pressure 

taken or being told about possible complications (among other significant measures of quality). 

We also find that women in rural areas exposed to higher levels of pollution over the last 12 

months are less likely to have visited a doctor or a nurse and more likely to have visited a 

community health worker instead. We further confirm the robustness of our findings using 

district-level data from India’s Annual Health Survey (AHS) from 2012/2013. 

India is one of the countries with the highest levels of air pollution in the world. Some 

regions in the Indo-Gangetic plains (which also have the highest population density in India) 

were exposed to as high as 16 times the levels set by the WHO standard of PM2.5 levels below 

10𝜇𝑔/𝑚3 (Ravishankara et al., 2020). While vehicular and industrial emissions are major sources 

of pollution in urban areas, crop burning is a common source of pollution in rural areas, and rural 

and urban areas are equally exposed to air pollution (Bikkina et al., 2019). It is estimated that, in 

2019, 10.4% of all deaths in India were attributed to ambient particulate matter pollution and the 

economic loss due to lost output from related premature deaths and morbidity was 0.84% of 

India’s GDP, with significant variation across states (Pandey et al., 2021). Understanding the 

total effects of air pollution, including those on reproductive health outcomes, is vital in 

quantifying the full costs of air pollution in India. In addition, this study sheds light on the little 

studied effects on healthcare services and brings attention to the need to prepare healthcare 

services for shocks related to air pollution and other environmental stressors in a developing 

country context. 

2. Conceptual Framework 

Gao et al (2024) incorporate air pollution in a standard quantity-quality fertility model to show 

that when the negative effect of air pollution on children’s health and educational outcomes is 

considered, increased pollution is expected to increase parental investment per child to mitigate 

those negative effects. This would make fertility more expensive and thus lower fertility for 

households with higher preferences for child quality, especially when their fertility is constrained 

as it is in China by the One Child Policy. In this paper, we test the predictions of their model in 
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the context of India where no fertility restrictions are present. In addition, we extend the 

evidence on the effect of air pollution to the study of the use of contraceptives and antenatal care. 

Below we present a simple conceptual framework that illustrates the ways in which air pollution 

may affect demand for reproductive healthcare.  

Suppose women choose consumption and investment in health to maximize their utility 

subject to a budget constraint and a health production function: 

maxC,I 𝑈(𝐶, 𝐻) 𝑠. 𝑡.  𝑝𝑐𝐶 + 𝑝ℎ𝐼 = 𝑌 𝑎𝑛𝑑 𝐻 = ℎ(𝐼; 𝜖, 𝑠, µ) 

where 𝑝𝑐 and 𝑝ℎ represent the marginal cost of the consumption good, C, and the health 

investment good, I, respectively. Health (H) is a function of investments in health which build on 

a health endowment, 𝜖, health shocks, 𝑠, as well as community characteristics that determine 

access to and quality of healthcare services, μ. The reduced-form demand function for the health 

investment good can be presented as a function of prices and income, as well as endowments and 

shocks: 𝐼 = 𝑓(𝑝ℎ, 𝑝𝑐, 𝑌; 𝜖, 𝜇, 𝑠). This simple model shows that air pollution could affect a 

woman’s demand for healthcare in a number of ways. 

First, air pollution may reduce demand for healthcare if the cost of the investment good, 𝑝ℎ, 

increases. Health investments can include both monetary and time investments. While there is no 

reason to expect the fees for antenatal care or contraceptives to increase due to pollution, the cost 

of the time investment is likely to go up. That is because the price of the time investment is the 

opportunity cost of time which increases if women have to wait longer for service when health 

providers are overwhelmed with patients with respiratory illnesses due to pollution. In addition, 

air pollution may increase the psychological cost of the time investment as women may prefer to 

stay home and reduce their exposure to air pollution. 

Second, air pollution may reduce demand for healthcare if the price of the consumption good 

increases or household income decreases. High air pollution can lead to people spending less 

time outdoors and, thus, less time working in order to reduce their exposure to air pollution. It 

can also lower labor productivity for those who do keep working. This may result in lower 

household income and as a result, lower demand for antenatal care or contraceptives. 

Third, air pollution may increase demand for healthcare if there is a negative health shock, 𝑠. 

Air pollution can serve as a negative health shock both to the mother’s health and her unborn 
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child. Since we are focusing on demand for contraceptives and antenatal health services, 

however, this effect may not be present if women are not aware of air pollution affecting the 

health of their baby or if they are less sensitive to the quantity-quality tradeoff because of few 

restrictions on their fertility. 

Finally, air pollution may affect demand for healthcare if it affects the quality and availability 

of healthcare services, μ. If air pollution causes disruption in the provision of services because of 

hospitals being overwhelmed with patients with respiratory illnesses and only lower-quality care 

is available, then women may choose to delay seeking antenatal care as it might now have lower 

perceived benefit. Similarly, if supply of contraceptives is disrupted, we would see lower use of 

modern methods of contraception.  

3. Data 

3.1 Demographic and Health Survey 

For the main analysis, we use nationally representative cross-sectional data from the fourth round 

of the Demographic and Health Survey (DHS-4) for India collected from January 2015 to 

December 2016. DHS-4 interviewed 699,686 women aged 15-49. DHS data include women’s 

full birth history, as well as information on births, miscarriages, and use of contraception and 

antenatal healthcare in the 12 months prior to the survey. DHS data also contain information on 

various individual and household characteristics including woman’s age, education, area of 

residence, religion, caste, and household wealth index. Importantly, DHS also provides the GPS 

locations of each survey cluster (equivalent to census villages), randomly displaced by up to 2 

km in urban areas and up to 5 km in rural areas (with 1% of rural areas displaced by up to 10 

km). We use information on geographic location and month and year of interview to link DHS 

data to other geo-coded data (like air pollution, wind and weather controls) for the 12 months 

prior to the household survey.  

3.2 Air pollution data 

Air pollution data on fine particulate matter, PM2.5, are from NASA’s Modern-Era 

Retrospective analysis for Research and Applications (MERRA-2) satellite reanalysis project 

(Global Modeling and Assimilation Office (GMAO), 2015a). Air pollution data are reported as a 

1-hour temporal data with a horizontal resolution of 0.5 x 0.625 degrees grid. Following 

Provençal et al. (2017), we first construct the daily average measure of fine particulate matter 
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(PM2.5) from black carbon (BC), organic carbon (OC), windblown mineral dust (DS2.5), sea salt 

(SS2.5), and sulfate (SO4) and then aggregate it to obtain the monthly means for each DHS 

cluster. In our sample, the average PM2.5 concentration in the last twelve months prior to the 

month of interview is 44.83𝜇𝑔/𝑚3 with a standard deviation of 16.33𝜇𝑔/𝑚3. Figures A1 and A2 

display the area study map and the distribution of PM2.5 averages over 12 months across all 

DHS clusters. 

3.3 Weather data 

Weather data including mean temperature, total precipitation, and wind speed and directions are 

downloaded from MERRA-2 Surface Flux Diagnostics datasets available at spatial resolution of 

0.5 x 0.625 degrees grid and at hourly frequency (Global Modeling and Assimilation Office 

(GMAO), 2015b). We construct the number of days during the study period (the past 12 months) 

when the daily wind was blowing in the direction of the NE (0-90 degrees), SE (90-180 degrees), 

SW (180-270 degrees), and NW (270-360 degrees). We then divide the number of days the wind 

came from each direction by the total number of days in the twelve months to calculate a share.  

3.4 Annual Health Survey 

As a robustness check, we also use district-level data from the India Annual Health Survey from 

2012-2013 - the closest year to our study period with publicly available data.2 The Annual Health 

Surveys collect information on maternal and child health, including the use of antenatal care, in 

nine states with high neonatal deaths: Assam, Bihar, Chhattisgarh, Jharkhand, Madhya Pradesh, 

Orissa, Rajasthan, Uttarakhand, and Uttar Pradesh.  

4. Empirical specification 

The main relationship we would like to estimate could be presented in this simple equation: 

 𝑦𝑖𝑐𝑔𝑚𝑦 = 𝛽0 + 𝛽1𝑃𝑀2.5𝑐𝑔𝑚𝑦 + 𝑋𝑖𝜆 + 𝑊𝑐𝑔𝑚𝑦𝜓 + 𝛼𝑔 + 𝜂𝑖(𝑚) + 𝜂𝑖(𝑦) + 𝑣𝑖𝑐𝑔𝑚𝑦  (1) 

where the dependent variable, 𝑦𝑖𝑐𝑔𝑚𝑦 is the outcome of interest for woman 𝑖 interviewed in 

month 𝑚 in year 𝑦 and living in grid-cell 𝑐 of the geographical region 𝑔. The size of the grid-cell 

is approximately 53 Km. The variable of interest is fine particulate matter represented as 𝑃𝑀2.5 

 
2 Data available here: https://www.data.gov.in/resource/key-indicators-annual-health-survey-ahs-2012-13. 
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which is the 12-month average level of PM2.5 concentration in the grid-cell before the month of 

interview in survey year 𝑦. The term 𝑋𝑖 includes a set of individual- and household-level 

characteristics that are plausibly unaffected by recent outdoor pollution levels. In particular, the 

individual-level characteristics include woman’s age (and age square) and woman’s education 

(an indicator for having no education, primary education, incomplete secondary education, and 

complete secondary education). The household-level characteristics include indicators for rural 

area of residence, Hindu religion, and scheduled castes or scheduled tribes and other backward 

castes. The standard errors are clustered at the district level. 

We include month of interview, 𝜂𝑖,(𝑚), and survey year, 𝜂𝑖,(𝑦), fixed effects to remove any 

time trends and seasonality effects. In addition, we include a host of weather controls to account 

for the fact that pollution and weather may be correlated.3 Specifically, we include the averages 

of precipitation, temperature, and wind speed measured at the grid-cell level as well as the square 

of these variables to capture non-linearities in the relationship between weather and pollution. 

Following Balietti et al. (2022) and Deryugina et al. (2019), we group grid-cells into 

geographical regions and include fixed effects for the geographical region of residence, 𝛼𝑔, to 

account for region-specific omitted variables (more details on the definition of the region below). 

The identifying assumption in this specification is that after controlling for observable 

individual- and household-level characteristics, seasonality and flexible weather controls, 

exposure to pollution is uncorrelated with the error term, 𝑣𝑖𝑐𝑔𝑚𝑦.  

One threat to identification is that pollution may be correlated with unobserved individual or 

household characteristics. For example, richer and more educated women may have better 

information about the effects of pollution on health and may be able relocate away from highly 

polluted areas. If these women are also more likely to use antenatal healthcare, for example, this 

may artificially create a negative effect of pollution on antenatal healthcare even if there were no 

relationship between the two variables. On the other hand, if areas with higher pollution are also 

richer areas with more economic activity and better (health) infrastructure, then higher pollution 

 
3 Figure A3 shows the relationship between PM2.5 concentration levels and the mean temperature, total 

precipitation, and average wind speed over the 12 months prior to the survey across the study region. 

PM2.5 levels are positively associated with mean temperature, while negatively associated with total 

precipitation. PM2.5 and wind speed exhibit a non-linear relationship with an inverse U-shape. Low and 

high wind speeds are associated with low levels of PM2.5, while moderate wind speeds increase PM2.5 

levels. 
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may be artificially associated with higher use of antenatal healthcare, once again biasing the 

coefficient of interest. In addition, classical measurement error in the pollution variable could 

bias the coefficient as well. 

Consistent with other studies that measure the impacts of air pollution (Balietti et al., 2022; 

Bondy et al., 2020; Deryugina et al., 2019; Herrnstadt et al., 2021), we use wind direction as an 

instrumental variable to address the endogeneity concerns. Specifically, we explain the variation 

in PM2.5 with the share of days in each DHS cluster when wind originated from one of the four 

quadrant wind directions (north, east, south, and west). The impact of local wind direction on 

local pollution may vary depending on the location of the source of pollution or other geographic 

characteristics. That is why, we interact our instrument, local wind direction, with geographical 

region and allow the effects of the instrument to vary by region. The estimating equations are: 

  𝑃𝑀𝑐𝑔𝑚𝑦 = 𝛾0 + ∑ 𝛾1
𝑔

𝑆ℎ𝑎𝑟𝑒𝑖𝑐
𝑁𝐺

𝑔 + ∑ 𝛾2
𝑔

𝑆ℎ𝑎𝑟𝑒𝑖𝑐
𝐸𝐺

𝑔 + ∑ 𝛾3
𝑔

𝑆ℎ𝑎𝑟𝑒𝑖𝑐
𝑆𝐺

𝑔 +

                                              𝑋𝑖𝜆 + 𝑊𝑐𝑔𝑚𝑦𝜓 + 𝛼𝑔 + 𝜂𝑖(𝑚) + 𝜂𝑖(𝑦) + 𝑢𝑖𝑐𝑔             (2) 

 𝑦𝑖𝑐𝑔𝑚𝑦 = 𝛽0 + 𝛽1𝑃𝑀̂2.5𝑐𝑔𝑚𝑦 + 𝑋𝑖𝜆 + 𝑊𝑐𝑔𝑚𝑦𝜓 + 𝛼𝑔 + 𝜂𝑖(𝑚) + 𝜂𝑖(𝑦) + 𝑣𝑖𝑐𝑔𝑚𝑦  (3) 

where 𝑆ℎ𝑎𝑟𝑒𝑖,𝑐
𝜔  with 𝜔 ∈ {𝑁, 𝐸, 𝑆} represents the respective shares of days in the past 12 months 

when the wind was blowing from North, East, and South where woman 𝑖 was living in grid-cell 𝑐 

of the geographical region 𝑔. 𝑆ℎ𝑎𝑟𝑒𝑖𝑐
𝑊𝑒𝑠𝑡 is the omitted category. The 𝛾𝑔 parameters are 

estimated based on the variation across all cells within geographical region 𝑔. 

We follow Balietti et al. (2022) and Deryugina et al. (2019) and use the k-means clustering 

algorithm to construct geographical regions based on the latitude and longitude coordinates of 

grid-cell centroids. Similar to Balietti et al. (2022), we use 30 regions (which results in 90 

excluded instruments in the first stage with 30 regions for each of the three wind directions: 

north, east, and south). Figure A4 presents first-stage evidence to motivate our identification 

strategy. This illustration shows that the wind directions that statistically explain variations in 

pollution levels differ across regions. Table A1 reports the regression results from the first stage. 

Wind direction is a strong predictor of air pollution with an F-statistic of 19.194. 

5. Results 
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5.1 Descriptive statistics 

Table 1 shows the descriptive statistics for our sample of 699,497 women with non-missing 

pollution data. The average age is 29.83 and 34% of women have no formal education. Seventy-

one percent of women live in rural areas. About 8% of women gave birth in the last 12 months 

prior to the month of interview and 1.1% had a miscarriage. Only 37% used family planning with 

33% using modern contraception. Among women who gave birth, 16% did not use any antenatal 

care. Of those who used antenatal care, 53% saw a doctor at some point during their pregnancy 

and 47% saw an Auxiliary Nurse Midwife (ANM).    

5.2 Effect of pollution on fertility outcomes 

In Table 2, we present the results for the effect of air pollution on fertility outcomes 

measured over the last 12 months preceding the survey. In column 1, the OLS analysis, 

controlling for individual and household characteristics, weather controls and time and region 

fixed effects, shows that for every 10 𝜇𝑔/𝑚3 increase in PM2.5 levels in the 12 months 

preceding the survey (an increase equivalent to close to ½ of the standard deviation of PM2.5), 

the probability of giving birth increases by 0.16 percentage points (pp). Given a sample mean of 

7.7% of women giving birth in the 12 months prior to the survey, the effect of a 10 𝜇𝑔/𝑚3 

increase in PM2.5 levels can be translated to an increase of 2.08% (100*0.16/7.7) in the 

probability of giving birth. Accounting for the potential endogeneity in the pollution variable 

using an instrumental variable regression model, however, reduces the coefficient by half and the 

effect is not statistically significant anymore.  

While Gao et al (2024) find a large decrease in the probability of giving birth associated with 

air pollution for Han Chinese, it may be the case that Indian households are less responsive to air 

pollution compared to Han Chinese because of lack of awareness of the health impacts of air 

pollution or inability to control fertility due to worse health infrastructure. To test these 

mechanisms, we perform heterogeneity analysis by mother’s education level, area of residence, 

and wealth. Columns 2 through 7 of Table 2 summarize these results. We find uniformly 

statistically insignificant effects of air pollution on fertility in all of these samples, which 

suggests that lack of information or inability to control fertility are likely not the key reason why 

we don’t find significant effects in India, although the magnitude of the effects for the less 

educated and rural sample is relatively large compared to the effects for the other samples. 
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Instead, our results are consistent with Indian households not responding to short-term changes 

in pollution levels similar to Gao et al (2024)’s finding on ethnic minorities in China who are not 

bound by the one child policy.4  

While Indian households may not have a binding constraint on the number of (quality) 

children they may have, they may be affected by traditional norms of preference for sons. The 

male skewed gender ratio in India has been shown to be due to infanticide and neglect of girls 

and elderly women, as well as sex-selective abortions (Calvi, 2020; Nandi & Deolalikar, 2013; 

Sahni et al., 2008). Given this context of sex selection that may occur even before birth, it is 

possible that women may choose to give birth to a son but not a daughter when exposed to high 

levels of pollution. With strong preference for sons, the benefit of having a son may outweigh 

any potential health costs associated with having a child affected by air pollution. Next, we test 

this hypothesis in column 8 and column 9 of Table 2. While the OLS results are consistent with 

our intuition, the IV estimates yield statistically insignificant effects (although they have the 

expected signs).5  

Overall, considering the main analysis as well as the additional heterogeneity analyses, we 

can say we don’t find any strong evidence for short-term effects of air pollution on fertility in the 

Indian context. Next, in column 10, we examine the effect of air pollution on the probability of 

miscarriage. Both the OLS and IV results show a positive and statistically significant relationship 

between higher PM2.5 levels and higher probability of having had a miscarriage in the last 12 

months, with the IV results being almost three times larger than the OLS results.6 Specifically, 

for every 10 𝜇𝑔/𝑚3 increase in PM2.5 levels in the 12 months preceding the survey, the 

probability of having a miscarriage increases by 0.17pp, or 15.5%, given a baseline of 1.1% of 

women having a miscarriage in that time period. The effect is economically and statistically 

 
4 We also test the medium-term effect of air pollution where we average air pollution levels over the last 

three years prior to the survey year. We see that rural households in particular respond to higher air 

pollution levels over the medium term by increasing their fertility by 0.61 pp (7.9%). The effect for urban 

households is smaller (0.16pp) and statistically insignificant.   
5 We further perform heterogeneity analysis by district sex ratio. We find small and statistically 

insignificant effects on birth, birth of a son and birth of a daughter both for districts with below median 

sex ratio and districts with above median sex ratio. 
6 This suggests a downward bias possibly due to positive correlation between pollution and 

district/household income and a negative correlation between district/household income and probability 

of a miscarriage. 
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significant and is present for the samples of women with and without secondary education, rural 

and urban areas and poor and non-poor households (Table A2).  

This is consistent with a strong biological effect of pollution on miscarriage rates, as already 

well-established in the literature. Interestigly, however, the effect on miscarriage rates is almost 

twice as large in rural areas (0.23 pp) as it is in urban areas (0.13pp) – also consistent with the 

large, although not statistically significant, effect of pollution on the probability of giving birth in 

rural areas. One reason for the difference in miscarriage rates between rural and urban areas 

could be that air pollution levels in rural areas are higher than air pollution levels in urban areas. 

In our sample, however, this doesn’t appear to be the case. The average air pollution level for 

rural areas is 45.0 𝜇𝑔/𝑚3 with a standard deviation of 16.2 𝜇𝑔/𝑚3 compared to average air 

pollution level of 44.4 𝜇𝑔/𝑚3 with a standard deviation of 16.7 𝜇𝑔/𝑚3 for urban areas. Another 

reason could be that women in urban areas are better able to avoid pollution if they have access 

to air filters or have others means of avoiding high levels of pollution exposure, including 

spending less time working outdoors. Yet, Jafarov et al. (2023) report that air filtration is not 

widespread and there isn’t a strong impact of air pollution on time use among urban households. 

Another explanation could be better access to (quality) reproductive healthcare services in urban 

areas compared to rural areas. Next, we test the effect of air pollution on reproductive healthcare 

with a special focus on differences between urban and rural areas.  

5.3  Effect of pollution on reproductive healthcare 

5.3.1 Effect on use of contraception 

First, in order to test the hypothesis of changes in access to (quality) reproductive healthcare, we 

examine the effect of air pollution on the use of family planning methods. Table 3 shows that, 

overall, higher air pollution is associated with a lower probability of using any family planning 

method, with large decreases in the probability of using modern contraception, which are not 

entirely offset by the higher probability of using traditional methods. Specifically, the 

instrumental variables analysis shows that an increase of 10 𝜇𝑔/𝑚3 in PM2.5 levels in the 12 

months preceding the survey decreases the probability of using modern contraception by 4.06pp 

and increases the probability of using traditional methods by 1.29pp. Splitting the sample by area 

of residence (rural versus urban), we see that while both rural and urban households have a 

significant reduction in the use of modern contraception, the decrease for urban households is 



13 
 

less than half the size of the decrease for rural households (1.93pp vs 5.07pp) and is mostly 

offset by an increase in the use of traditional family planning methods. As a result, the effect of 

air pollution on the overall probability of using any family planning methods is small in 

magnitude and not statistically significant for urban households (0.43pp) but large and 

statistically significant for rural households (3.35pp). Our results are similar to the findings in 

Nguyen (2025) who shows that drought exposure in the 12 months prior to the survey is 

associated with a 4.4pp reduction in the probability of using modern contraception in Vietnam. 

This result is consistent with air pollution causing a larger disruption in the access to 

modern family planning methods in rural areas compared to urban areas and could explain why 

we see a relatively large (although not statistically significant) positive effect of air pollution on 

the probability of having a recent birth in rural areas. Another explanation for this finding could 

be that air pollution causes a greater shock to labor productivity and income in rural areas than 

urban areas because labor supply in rural areas and among self-employed or casual workers is 

more flexible.7 Thus, women in rural areas may be less able to afford modern contraception. 

Lack of access to modern contraception, whether due to supply-side or demand-side 

considerations, could be contribute to the higher (even if not statistically significant) birth rates 

in rural areas. If rural women are more likely to conceive, they may also be more likely to have a 

miscarriage compared to urban women.  

Next, we study the effect of air pollution on access to (quality) antenatal care. 

5.3.2 Effect on antenatal care 

In Table 4, we present the results of the instrumental variables analysis for usage of antenatal 

healthcare for all women who have given birth in the last 12 months. We show that in the full 

sample, for every 10 𝜇𝑔/𝑚3 increase in PM2.5 levels in the 12 months preceding the survey, 

there is a 3.2pp increase in the probability of not using antenatal healthcare, which corresponds 

to a 19.5% increase relative to the sample mean probability. The effect is even larger in rural 

areas (4.22pp) but also present in urban areas (1.74pp). Even if we consider the difference in 

 
7 For example, Jafarov et al. (2023) show that higher air pollution in India is associated with reductions in 

time spent on outdoor labor activities for those who are self-employed and casual-laborers and they also 

show no effect on urban residents. At the same time, Gupta et al. (2017) and Merfeld (2023) find a 

negative effect on agricultural production in rural India. 
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baseline probability of no antenatal healthcare between rural and urban areas, the differences in 

effect sizes remain (effect of 22.8% for rural areas given a sample mean of 18.5% of women not 

receiving antenatal care in rural areas, and effect of 18.5% for urban areas given a sample mean 

of 9.4%). We also find that women in both rural and urban areas who do get antenatal care are 

significantly more likely to delay their first antenatal healthcare appointment. And women in 

both rural and urban areas are significantly less likely to have taken iron pills (for anemia) in the 

last 12 months preceding the survey.  

Next, we attempt to examine the quality of antenatal healthcare received using information 

on whether women were weighed, had their blood pressure taken, gave a urine sample, gave 

blood, and were told about possible complications. The results are summarized in Columns 4 

through 9 of Table 4. Across all measures and across all samples, we find large and statistically 

significantly negative effects of air pollution on the quality of healthcare and once again, larger 

effect sizes in rural areas than urban areas.  

In Table 5, we further examine whether changes in air pollution are associated with changes 

in the provider of antenatal healthcare. In rural areas, we see that higher air pollution has a 

statistically significantly negative effect on the probability of receiving antenatal care from the 

more qualified doctors (3.57pp) and Auxiliary Nurse Midwives, ANM (4.26pp), and an increase 

in the probability of receiving care from the less qualified community health workers (including 

accredited social health activists (ASHA)). We see smaller and statistically insignificant effects 

on the use of these providers for urban areas. Urban women are more likely to report seeing other 

providers, although the effect is small (0.14pp), and less likely to see Anganwadi workers 

(1.55pp), who are usually responsible for health and nutrition services. 

Overall, there are two key implications of these results. First, the results suggest that air 

pollution changes access to (quality) healthcare whether because of supply-side constraints when 

health centers get overwhelmed with patients with respiratory illnesses due to pollution or 

because of demand-side constraints if women are less willing or able to travel to a health center 

because of health concerns, long waiting times, or cost considerations. This is consistent with the 

study by Liu et al (2022) which shows that higher monthly air pollution in China is associated 

with lower likelihood of visiting a health facility when ill or injured. The effect sizes in Liu et al 

(2022) are remarkably similar to our results – a 10µg/m3 increase in monthly average PM2.5 
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was associated with an 18% increase in the probability of refraining from visiting health 

facilities. The second implication of our results is that the worsening of access to (quality) 

antenatal healthcare could have contributed to the higher miscarriage rates if it resulted in a 

failure to detect pollution-induced risk factors associated with miscarriage such as infections, 

anemia and hypertension although this type of mediator analysis is beyond the scope of the 

paper.8  

5.3.3 Analysis using the Annual Health Survey 

To further test the robustness of our novel findings, we use district-level data from India’s 

Annual Health Survey. We regress district-level reproductive healthcare indicators for the study 

period (2012-2013) on district average PM2.5 level in 2012 and include weather controls and 

region fixed effects, similar to our main household-level specification. The results are presented 

in Table A3. We find large and statistically significant positive effects of PM2.5 pollution levels 

on the proportion of women having an abortion (which may include spontaneous abortions, i.e., 

miscarriages, or may be an indicator of the increase in undesired pregnancies due to the reduced 

use of contraceptives). Similar to our main results, we also see negative effects on the use of 

contraceptives (especially modern contraceptives) and on access to (quality) reproductive 

healthcare: a smaller proportion of women received any ANC, received the full schedule of 

ANC, as well as had ANC before the abortion or an abortion by a skilled professional. Overall, 

the analysis using data from the AHS supports the robustness of our results. 

6. Conclusion 

Air pollution has been shown to have wide-ranging negative effects on health, including effects 

on fertility. Less is known about the way people respond to high levels of air pollution and the 

indirect effects of air pollution on fertility. This paper examines the effect of PM2.5 levels on 

reproductive health in India – one of the countries with the highest levels of air pollution in the 

world. We show no short-term changes in the probability of giving birth but significant increases 

in miscarriage probability. We also find that a higher level of air pollution in the past twelve 

 
8 One caveat of this analysis is that the survey data contains information on antenatal healthcare for all women who 

have given birth in the last 12 months but does not include women who have had a miscarriage (unless they already 

have had a successful pregnancy during that time period – which only 7% of them do). We assume the findings are 

broadly applicable to all women. 
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months is associated with a significant reduction in access to reproductive healthcare during that 

time period. Specifically, we find that women exposed to higher PM2.5 levels were less likely to 

use modern methods of contraception and less likely to use antenatal healthcare if they got 

pregnant. Further, air pollution affected the types of providers women were likely to see for 

antenatal care, reducing the probability of them seeing a more qualified doctor or nurse and 

increasing the probability of seeing a less qualified community health worker. Further work is 

needed to establish to what extent women’s lower access to (quality) reproductive healthcare is 

due to supply-side and demand-side factors and whether better access to reproductive healthcare 

can mitigate some of the negative impacts of air pollution on miscarriage rates. 
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Figures and Tables 

Table 1. Individual- and Household-level Summary Statistics  

Variable Mean SD 

Birth outcome:   

Birth in the last 12 months 0.077 0.27 

Miscarriage in the last 12 months 0.011 0.10 

Contraceptive use in the last 12 months:   

Family planning method  0.374 0.48 

Modern family planning method 0.329 0.47 

Traditional family planning method 0.045 0.21 

If given birth in the last 12 months:   

Saw a doctor for ANC 0.543 0.50 

Saw ANM for ANC 0.467 0.50 

Saw traditional healer for ANC 0.008 0.09 

Saw CHW for ANC 0.005 0.07 

Saw Anganwadi worker for ANC 0.106 0.31 

Saw Asha worker for ANC 0.065 0.25 

Saw other worker for ANC 0.002 0.04 

Did not have any ANC 0.164 0.37 

Month of 1st ANC visit 3.325 1.58 

Number of ANC visits (conditional on any) 5.056 4.21 

Weighed at ANC visit 0.897 0.30 

Blood Pressure taken at ANC visit 0.894 0.31 

Urine sample taken at ANC visit 0.86 0.35 

Blood sample taken at ANC visit 0.87 0.34 

Told about possible complications during ANC visits 0.621 0.49 

Took iron pills 0.793 0.55 

Individual-level characteristics:   

Age 29.829 9.76 

No education 0.339 0.47 

Primary education only 0.068 0.25 

Incomplete secondary education 0.391 0.49 

Secondary education or more 0.087 0.28 

Household-level characteristics:   

Rural 0.706 0.46 

Hindu 0.743 0.44 

Scheduled Castes/Scheduled Tribes 0.359 0.48 

Other Backward Castes 0.392 0.49 

Notes: The overall sample size is 696,497. Modern methods include sterilization of women and 

men, using IUDs/copper-t/loop, oral pills, male and female condoms, and other modern methods. 

Traditional methods include using rhythm, periodically abstaining, withdrawing, and other 

methods. ANC and ANM refer to Antenatal Care and Auxiliary Nurse Midwife, respectively. 
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Table 2. Effect of Air Pollution on Fertility Outcomes 

Dependent 

variable: Binary 

(0/1) 

Overall Mother with no 

education or 

primary education 

only 

Mother with 

some 

secondary 

education 

Rural Urban 

 (1) (2) (3) (4) (5) 

Panel A: OLS estimates    

PM2.5 (𝜇𝑔/𝑚3) 0.00016** 0.00026** -0.00001 0.00022** -0.00002 

 (0.00008) (0.00010) (0.00009) (0.00010) (0.00009) 

      

Panel B: IV estimates using wind directions  

PM2.5 (𝜇𝑔/𝑚3) 0.00006 0.00018 -0.00009 0.00025 -0.00005 

 (0.00012) (0.00014) (0.00019) (0.00020) (0.00012) 

      

Mean of 

dependent 

variable 

0.077 0.077 0.077 0.084 0.060 

First-stage (F-

test) 

19.194 18.593 20.514 21.500 18.822 

Observations 696,497 363,140 333,357 491,920 204,104 

      

 Poor 

households 

Non-poor 

households 

Give birth to a 

girl in the last 

12 months 

Give birth to a 

boy in the last 

12 months 

Incidence of 

miscarriage 

 (6) (7) (8) (9) (10) 

Panel A: OLS estimates     

PM2.5 (𝜇𝑔/𝑚3) 0.00018 -0.00001 0.00003 0.00013** 0.00006*** 

 (0.00012) (0.00008) (0.00004) (0.00005) (0.00002) 

      

Panel B: IV estimates using wind directions    

PM2.5 (𝜇𝑔/𝑚3) -0.00006 -0.00004 -0.00003 0.00009 0.00017*** 

 (0.00017) (0.00011) (0.00028) (0.00007) (0.00003) 

      

Mean of 

dependent 

variable 

0.095 0.065 0.037 0.041 0.011 

First-stage (F-

test) 

22.341 16.766 19.194 19.194 19.194 

Observations 281,104 415,393 696,497 696,497 696,497 

 

Notes: Standard errors reported in parentheses are clustered at the district level. The number of clusters is 

640. The dependent variable in columns 1 through 7 is whether a woman has given birth in the past 12 

months before the survey. All regressions include individual and household-level characteristics, weather 

controls, as well as fixed effects for geographic regions, the month of interview, and survey year. 

 **denotes significance at the 5% level and ***denotes significance at the 1% level. 
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Table 3. Effect of Air Pollution on the Use of Contraception 

Dependent variable: Binary (0/1) Any method Modern method Traditional method 

 (1) (2) (3) 

Panel A1: OLS estimates (overall sample)    

PM2.5 (𝜇𝑔/𝑚3) -0.00230*** 

(0.00052) 

-0.00309*** 

(0.00048) 

0.00079*** 

(0.00020) 

Panel B1: IV estimates using wind directions (overall sample)   

PM2.5 (𝜇𝑔/𝑚3) -0.00277*** 

(0.00065) 

-0.00406*** 

(0.00055) 

0.00129*** 

(0.00030) 

Mean of dependent variable 0.373 0.328 0.045 

First-stage (F-test) 19.194 19.194 19.194 

Observations 696,497 696,497 696,497 

Panel A2: OLS estimates (rural sample)    

PM2.5 (𝜇𝑔/𝑚3) -0.00282*** 

(0.00055) 

-0.00366*** 

(0.00050) 

0.00085*** 

(0.00020) 

Panel B2: IV estimates using wind directions (rural sample)  

PM2.5 (𝜇𝑔/𝑚3) -0.00335*** 

(0.00099) 

-0.00507*** 

(0.00084) 

0.00172*** 

(0.00042) 

Mean of dependent variable 0.370 0.325 0.045 

First-stage (F-test) 21.500 21.500 21.500 

Observations 491,920 491,920 491,920 

Panel A3: OLS estimates (urban sample)    

PM2.5 (𝜇𝑔/𝑚3) -0.00059 

(0.00053) 

-0.00142*** 

(0.00054) 

0.00083*** 

(0.00029) 

Panel B3: IV estimates using wind directions (urban sample)  

PM2.5 (𝜇𝑔/𝑚3) -0.00043 

(0.00067) 

-0.00193*** 

(0.00061) 

0.00151*** 

(0.00040) 

Mean of dependent variable 0.381 0.336 0.045 

First-stage (F-test) 18.822 18.822 18.822 

Observations 204,577 204,577 204,577 

 

Notes: Standard errors reported in parentheses are clustered at the district level. The number of clusters is 

640 for the overall sample, 627 for the rural sample, and 637 for the urban sample. Any method refers to 

the combination of modern and traditional methods of contraception. Modern methods include 

sterilization of women and men, using IUDs/copper-t/loop, oral pills, male and female condoms, and 

other modern methods. Traditional methods include using rhythm, periodically abstaining, withdrawing, 

and other methods. All regressions include individual and household-level characteristics, weather 

controls, as well as fixed effects for geographic regions, the month of interview, and survey year. 

 ***denotes significance at the 1% level. 
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Table 4. Effects of Air Pollution on Access and Quality of Antenatal Health Care 

 Woman’s Access to Antenatal Care  

 No 

antenatal 

care 

Month of 

first 

antenatal 

care 

Number of 

antenatal visits 

(conditional on 

any) 

Took iron 

pills 

 

 (1) (2) (3) (4)  

Panel A: All residences     
PM2.5 (𝜇𝑔/𝑚3) 0.00320*** 

(0.00091) 

0.01044*** 

(0.00242) 

-0.00702 

(0.00824) 

-0.00511*** 

(0.00085) 

 

Mean of dep. var. 0.164 3.325 5.056 0.793  

Observations 53,883 44,940 44,612 53,883  

F-stat 19.412 20.158 20.158 19.412  

Panel B: Only rural residence    
PM2.5 (𝜇𝑔/𝑚3) 0.00422*** 

(0.00136) 

0.01097*** 

(0.00348) 

-0.01317 

(0.01091) 

-0.00457*** 

(0.00125) 

 

Mean of dep. var. 0.185 3.401 4.720 0.774  

Observations 41,592 33,818 33,593 41,592  

F-stat 21.811 22.202 22.326 21.811  

Panel C: Only urban residence    
PM2.5 (𝜇𝑔/𝑚3) 0.00174* 

(0.00102) 

0.01524*** 

(0.00424) 

-0.01563 

(0.01357) 

-0.00406*** 

(0.00124) 

 

Mean of dep. var. 0.094 3.094 6.081 0.857  

Observations 12,291 11,122 11,019 12,291  

F-stat 19.382 19.054 19.230 19.382  

 Quality of Antenatal Care 

 Weighed BP taken Urine sample 

given 

Blood taken Told about 

possible 

complications 

 (5) (6) (7) (8) (9) 

Panel A1: All residences   

PM2.5 (𝜇𝑔/𝑚3) -0.00643*** 

(0.00069) 

-0.00649*** 

(0.00064) 

-0.00621*** 

(0.00068) 

-0.00689*** 

(0.00069) 

-0.00646*** 

(0.00094) 

Mean of dep. var. 0.897 0.894 0.860 0.870 0.621 

Observations 45,048 45,048 45,048 45,048 45,048 

F-stat 20.125 20.125 20.125 20.125 20.125 

Panel B1: Only rural residence   

PM2.5 (𝜇𝑔/𝑚3) -0.00734*** 

(0.00103) 

-0.00801*** 

(0.00102) 

-0.00689*** 

(0.00103) 

-0.00823*** 

(0.00111) 

-0.00697*** 

(0.00138) 

Mean of dep. var. 0.886 0.876 0.841 0.848 0.611 

Observations 33,913 33,913 33,913 33,913 33,913 

F-stat 22.191 22.191 22.191 22.191 22.191 

Panel C1: Only urban residence   

PM2.5 (𝜇𝑔/𝑚3) -0.00463*** 

(0.00077) 

-0.00398*** 

(0.00062) 

-0.00528*** 

(0.00083) 

-0.00455*** 

(0.00066) 

-0.00551*** 

(0.00121) 

Mean of dep. var. 0.932 0.947 0.919 0.938 0.652 

Observations 11,135 11,135 11,135 11,135 11,135 

F-stat 18.962 18.962 18.962 18.962 18.962 

Notes: Standard errors reported in parentheses are clustered at the district level. All regressions include 

individual and household-level characteristics, weather controls, as well as fixed effects for geographic 

regions, the month of interview, and survey year. 

 * denotes significance at the 10% level, **denotes significance at the 5% level, and ***denotes 

significance at the 1% level. 
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Table 5. Effect of Air Pollution on Providers of Antenatal Health Care 

 Visit 

doctor 

ANM 

nurse 

CHW 

health 

worker 

ASHA 

health 

worker 

Anganwadi Traditional Other 

 (1) (2) (3) (4) (5) (6) (7) 

Panel A: All residences    

PM2.5  

(𝜇𝑔/𝑚3) 

-0.00118 

(0.00117) 

-0.00504*** 

(0.00125) 

0.00011* 

(0.00006) 

0.00104** 

(0.00043) 

-0.00122** 

(0.00053) 

-0.00002 

(0.00008) 

0.00011* 

(0.00006) 

Mean of dep. 

var. 

0.543 0.467 0.005 0.065 0.105 0.008 0.002 

Observations 53,883 53,883 53,883 53,883 53,883 53,883 53,883 

F-stat 19.412 19.412 19.412 19.412 19.412 19.412 19.412 

Panel B: Only rural residence     

PM2.5  

(𝜇𝑔/𝑚3) 

-0.00357** 

(0.00180) 

-0.00426** 

(0.00182) 

0.00026*** 

(0.00010) 

0.00126* 

(0.00069) 

-0.00188** 

(0.00085) 

-0.00014 

(0.00014) 

0.00010 

(0.00009) 

Mean of dep. 

var. 

0.494 0.473 0.005 0.076 0.116 0.009 0.002 

Observations 41,592 41,592 41,592 41,592 41,592 41,592 41,592 

F-stat 21.811 21.811 21.811 21.811 21.811 21.811 21.811 

Panel C: Only urban residence     

PM2.5 

 (𝜇𝑔/𝑚3) 

-0.00228 

(0.00145) 

-0.00117 

(0.00143) 

0.00001 

(0.00010) 

0.00039 

(0.00044) 

-0.00155** 

(0.00063) 

0.00005 

(0.00011) 

0.00014*** 

(0.00005) 

Mean of dep. 

var. 

0.711 0.445 0.005 0.029 0.069 0.007 0.001 

Observations 12,291 12,291 12,291 12,291 12,291 12,291 12,291 

F-stat 19.382 19.382 19.382 19.382 19.382 19.382 19.382 

Notes: Standard errors reported in parentheses are clustered at the district level. All regressions include 

individual and household-level characteristics, weather controls, as well as fixed effects for geographic 

regions, the month of interview, and survey year.  

* denotes significance at the 10% level, **denotes significance at the 5% level, and ***denotes 

significance at the 1% level. 
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Appendix Figures and Tables 

 

Figure A1. Map of the Study Area 

Note: The dots represent the average 12-month PM2.5 levels (in 𝜇𝑔/𝑚3) for DHS clusters in the 

survey period. The number of DHS clusters is 28,330. The district boundaries are shown in gray.  
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Figure A2. Distribution of PM2.5 concentration levels 
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Figure A3. PM2.5 concentration levels and the Weather Bin Scatterplot 
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Figure A4. Annual wind direction and PM2.5: first stage estimates by regions. 

Note: The figure is obtained by regressing PM2.5 on the interaction term between the share of 

wind directions and geographic clusters, controlling for geographic regions, interview month, 

and year of interview FEs. Standard errors are clustered at the district level. The coefficients are 

represented by a solid blue line, while the 95% confidence interval is represented by a dashed 

line. 
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Table A1. First-stage regression results 

 PM2.5 

Share of the wind from the North, region 1 -26.18*** 

 (-3.31) 

Share of the wind from the North, region 2 -32.35*** 

 (-5.60) 

Share of the wind from the North, region 3 -53.34* 

 (-2.15) 

Share of the wind from the North, region 4 7.638 

 (0.48) 

Share of the wind from the North, region 5 -18.06** 

 (-2.59) 

Share of the wind from the North, region 6 -68.06*** 

 (-4.70) 

Share of the wind from the North, region 7 -102.3*** 

 (-9.55) 

Share of the wind from the North, region 8 -69.85** 

 (-3.29) 

Share of the wind from the North, region 9 4.782 

 (1.34) 

Share of the wind from the North, region 10 1.063 

 (0.03) 

Share of the wind from the North, region 11 3.738 

 (0.33) 

Share of the wind from the North, region 12 -57.58*** 

 (-3.84) 

Share of the wind from the North, region 13 -76.31*** 

 (-5.89) 

Share of the wind from the North, region 14 16.79 

 (0.56) 

Share of the wind from the North, region 15 -63.89** 

 (-2.98) 

Share of the wind from the North, region 16 -46.92* 

 (-2.36) 

Share of the wind from the North, region 17 -63.59*** 

 (-3.68) 

Share of the wind from the North, region 18 -10.23 

 (-0.37) 

Share of the wind from the North, region 19 -37.41* 

 (-2.29) 

Share of the wind from the North, region 20 -4.604 

 (-0.38) 

Share of the wind from the North, region 21 -52.59*** 

 (-3.39) 

Share of the wind from the North, region 22 21.34 

 (0.67) 

Share of the wind from the North, region 23 -52.63*** 

 (-6.81) 

  

Share of the wind from the North, region 24 -72.35*** 



30 
 

 (-4.98) 

Share of the wind from the North, region 25 32.36 

 (0.97) 

Share of the wind from the North, region 26 18.44** 

 (3.19) 

Share of the wind from the North, region 27 17.96 

 (1.33) 

Share of the wind from the North, region 28 -75.64*** 

 (-10.66) 

Share of the wind from the North, region 29 -23.63 

 (-1.35) 

Share of the wind from the North, region 30 -99.94*** 

 (-6.97) 

Share of the wind from the East, region 1 6.694 

 (0.60) 

Share of the wind from the East, region 2 -34.64*** 

 (-5.41) 

Share of the wind from the East, region 3 22.67** 

 (2.91) 

Share of the wind from the East, region 4 51.03* 

 (2.34) 

Share of the wind from the East, region 5 20.61** 

 (3.00) 

Share of the wind from the East, region 6 -29.09** 

 (-2.66) 

Share of the wind from the East, region 7 -134.3*** 

 (-6.87) 

Share of the wind from the East, region 8 -1.916 

 (-0.30) 

Share of the wind from the East, region 9 -2.695 

 (-0.31) 

Share of the wind from the East, region 10 4.052 

 (0.25) 

Share of the wind from the East, region 11 13.69 

 (1.07) 

Share of the wind from the East, region 12 -36.44 

 (-1.77) 

Share of the wind from the East, region 13 -68.45*** 

 (-6.34) 

Share of the wind from the East, region 14 18.59 

 (0.78) 

Share of the wind from the East, region 15 -3.624 

 (-0.39) 

Share of the wind from the East, region 16 55.44*** 

 (3.57) 

Share of the wind from the East, region 17 1.184 

 (0.04) 

Share of the wind from the East, region 18 9.206 

 (0.89) 

  

Share of the wind from the East, region 19 -3.066 
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 (-0.22) 

Share of the wind from the East, region 20 45.81*** 

 (3.57) 

Share of the wind from the East, region 21 -45.03 

 (-1.29) 

Share of the wind from the East, region 22 24.52 

 (0.88) 

Share of the wind from the East, region 23 6.773 

 (1.11) 

Share of the wind from the East, region 24 21.73 

 (1.15) 

Share of the wind from the East, region 25 40.86 

 (1.90) 

Share of the wind from the East, region 26 -91.30*** 

 (-6.00) 

Share of the wind from the East, region 27 44.49*** 

 (5.57) 

Share of the wind from the East, region 28 -42.95*** 

 (-5.18) 

Share of the wind from the East, region 29 32.34* 

 (2.25) 

Share of the wind from the East, region 30 -18.58 

 (-1.23) 

Share of the wind from the South, region 1 -11.41 

 (-1.02) 

Share of the wind from the South, region 2 14.76 

 (1.54) 

Share of the wind from the South, region 3 43.58*** 

 (4.14) 

Share of the wind from the South, region 4 73.87*** 

 (4.78) 

Share of the wind from the South, region 5 3.528 

 (0.34) 

Share of the wind from the South, region 6 -53.17*** 

 (-4.51) 

Share of the wind from the South, region 7 -129.3*** 

 (-8.48) 

Share of the wind from the South, region 8 16.47* 

 (2.27) 

Share of the wind from the South, region 9 16.47*** 

 (3.44) 

Share of the wind from the South, region 10 31.37* 

 (2.13) 

Share of the wind from the South, region 11 39.59*** 

 (3.75) 

Share of the wind from the South, region 12 -56.18*** 

 (-3.34) 

Share of the wind from the South, region 13 -92.55*** 

 (-9.46) 

  

Share of the wind from the South, region 14 20.64 
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 (0.98) 

Share of the wind from the South, region 15 -3.417 

 (-0.28) 

Share of the wind from the South, region 16 83.83*** 

 (3.66) 

Share of the wind from the South, region 17 -25.54 

 (-1.16) 

Share of the wind from the South, region 18 13.38 

 (1.26) 

Share of the wind from the South, region 19 22.21* 

 (2.04) 

Share of the wind from the South, region 20 43.43*** 

 (4.08) 

Share of the wind from the South, region 21 -68.22* 

 (-2.49) 

Share of the wind from the South, region 22 26.29 

 (0.86) 

Share of the wind from the South, region 23 6.812 

 (0.91) 

Share of the wind from the South, region 24 -8.026 

 (-0.52) 

Share of the wind from the South, region 25 49.43** 

 (2.87) 

Share of the wind from the South, region 26 50.47*** 

 (9.53) 

Share of the wind from the South, region 27 23.11* 

 (2.18) 

Share of the wind from the South, region 28 -51.19*** 

 (-5.31) 

Share of the wind from the South, region 29 57.64*** 

 (4.09) 

Share of the wind from the South, region 30 -38.81** 

 (-2.61) 

Individual-level characteristics  

Woman’s current age 0.00578 

 (0.70) 

Woman’s age square -0.000249* 

 (-2.15) 

Woman’s education:  

No education 0.507*** 

 (3.79) 

Primary education 0.0859 

 (0.79) 

Incomplete secondary education 0.192** 

 (2.73) 

Secondary education 0.296*** 

 (4.71) 

Household-level characteristics  

Rural 0.349* 

 (1.97) 

Religion (Hindu = 1) -0.368 
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 (-1.64) 

Social class (SC/ST = 1) -0.257 

 (-1.59) 

Social class (OBC = 1) 0.0769 

 (0.61) 

Weather controls  

Mean temperature -22.18*** 

 (-3.98) 

Mean temperature square 0.0429*** 

 (4.40) 

Total precipitation -0.0128*** 

 (-4.02) 

Total precipitation square 0.00000639*** 

 (5.02) 

Wind speed 19.71*** 

 (7.03) 

Wind speed square -2.272*** 

 (-7.86) 

Geographical regions FEs Yes 

Month of interview FEs Yes 

Survey year FEs Yes 

Observations 696,497 

F-stat 19.194 

Notes: t statistics in parentheses. Level of significance: * p<0.05, ** p<0.01, *** p<0.001. 
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Table A2. Effect of Air Pollution on the Incidence of Miscarriage, Disaggregated by Education, 

Type of Residence, and Household Wealth 

 Full 

sample 

Mother with 

no education 

or primary 

education 

only 

Mother 

with some 

secondary 

education 

Rural Urban Poor Non-Poor 

 (1) (2) (3) (4) (5) (6) (7) 

PM2.5 

(𝜇𝑔/𝑚3) 

0.00017*** 

(0.00003) 

0.00018*** 

(0.00004) 

0.00019*** 

(0.00006) 

0.00023*** 

(0.00005) 

0.00012** 

(0.00005) 

0.00018*** 

(0.00004) 

0.00015*** 

(0.00004) 

Mean of dep. 

var. 

0.011 0.010 0.012 0.011 0.011 0.011 0.011 

Observations 696,497 363,140 333,357 491,920 204,577 281,104 415,393 

F-stat 19.194 18.593 19.927 21.500 18.822 22.341 16.766 

Notes: Standard errors reported in parentheses are clustered at the district level. All regressions include 

individual and household-level characteristics, weather controls, as well as fixed effects for geographic 

regions, the month of interview, and survey year.  

**denotes significance at the 5% level and ***denotes significance at the 1% level. 
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Table A3. Effect of Air Pollution on Reproductive Health Care Using India’s Annual Health 

Survey 

 Abortion ANC before 

abortion 

Abortion by 

skilled 

provider 

Use of any 

contraceptive 

 (1) (2) (3) (4) 

PM2.5 

(𝜇𝑔/𝑚3) 

0.07061*** 

(0.02731) 

-0.38046*** 

(0.10832) 

-0.40050*** 

(0.15137) 

-0.60722*** 

(0.08902) 

Mean of dep. 

var. 

4.947 47.544 55.262 59.695 

Number of 

districts 

281 281 281 281 

F-stat 43.036 43.036 43.036 43.036 

 Use modern 

contraceptive 

method 

Use traditional 

contraceptive 

method 

Any ANC Schedule of 

ANC 

 (5) (6) (7) (8) 

PM2.5 

(𝜇𝑔/𝑚3) 

-0.93444*** 

(0.07841) 

0.32649*** 

(0.06891) 

-0.09823* 

(0.05675) 

-0.10633*** 

(0.04925) 

Mean of dep. 

var. 

46.986 12.711 90.020 70.140 

Observations 281 281 281 281 

F-stat 43.036 43.036 43.036 43.036 
Notes: Standard errors reported in parentheses are clustered at the district level. All regression includes 

weather controls and region fixed effects.  

* denotes significance at the 10% level and ***denotes significance at the 1% level. 


